1
|
Gao H, Wang Z, Zhu D, Zhao L, Xiao W. Dioscin: Therapeutic potential for diabetes and complications. Biomed Pharmacother 2024; 170:116051. [PMID: 38154275 DOI: 10.1016/j.biopha.2023.116051] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/30/2023] Open
Abstract
Diabetes mellitus is a widespread metabolic disorder with increasing incidence worldwide, posing a considerable threat to human health because of its complications. Therefore, cost-effective antidiabetic drugs with minimal side effects are urgently needed. Dioscin, a naturally occurring compound, helps to reduce the complications of diabetes mellitus by regulating glucose and lipid metabolism, protecting islet β cells, improving insulin resistance, and inhibiting oxidative stress and inflammatory response. Plant-derived dioscin reduces the risk of toxicity and side effects associated with chemically synthesized drugs. It is a promising option for treating diabetes mellitus because of its preventive and therapeutic effects, which may be attributed to a variety of underlying mechanisms. However, data compiled by current studies are preliminary. Information about the molecular mechanism of dioscin remains limited, and no high-quality human experiments and clinical trials for testing its safety and efficacy have been conducted. As a resource for research in this area, this review is expected to provide a systematic framework for the application of dioscin in the treatment of diabetes mellitus and its complications.
Collapse
Affiliation(s)
- Haoyang Gao
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Ze Wang
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Danlin Zhu
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Linlin Zhao
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China; School of Physical Education, Shanghai Normal University, Shanghai 200234, China.
| | - Weihua Xiao
- Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
2
|
Zhang J, Xu J, Lim J, Nolan JK, Lee H, Lee CH. Wearable Glucose Monitoring and Implantable Drug Delivery Systems for Diabetes Management. Adv Healthc Mater 2021; 10:e2100194. [PMID: 33930258 DOI: 10.1002/adhm.202100194] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/12/2021] [Indexed: 12/11/2022]
Abstract
The global cost of diabetes care exceeds $1 trillion each year with more than $327 billion being spent in the United States alone. Despite some of the advances in diabetes care including continuous glucose monitoring systems and insulin pumps, the technology associated with managing diabetes has largely remained unchanged over the past several decades. With the rise of wearable electronics and novel functional materials, the field is well-poised for the next generation of closed-loop diabetes care. Wearable glucose sensors implanted within diverse platforms including skin or on-tooth tattoos, skin-mounted patches, eyeglasses, contact lenses, fabrics, mouthguards, and pacifiers have enabled noninvasive, unobtrusive, and real-time analysis of glucose excursions in ambulatory care settings. These wearable glucose sensors can be integrated with implantable drug delivery systems, including an insulin pump, glucose responsive insulin release implant, and islets transplantation, to form self-regulating closed-loop systems. This review article encompasses the emerging trends and latest innovations of wearable glucose monitoring and implantable insulin delivery technologies for diabetes management with a focus on their advanced materials and construction. Perspectives on the current unmet challenges of these strategies are also discussed to motivate future technological development toward improved patient care in diabetes management.
Collapse
Affiliation(s)
- Jinyuan Zhang
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
| | - Jian Xu
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
| | - Jongcheon Lim
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
| | - James K. Nolan
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
| | - Hyowon Lee
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering Purdue University West Lafayette IN 47907 USA
- School of Mechanical Engineering School of Materials Engineering Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
3
|
Zhang S, Gan R, Zhao L, Sun Q, Xiang H, Xiang X, Zhao G, Li H. Unveiling the interaction mechanism of alogliptin benzoate with human serum albumin: Insights from spectroscopy, microcalorimetry, and molecular docking and molecular dynamics analyses. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119040. [PMID: 33068900 DOI: 10.1016/j.saa.2020.119040] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/23/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
The interaction between a DPP-4 inhibitor, alogliptin benzoate (AB), and human serum albumin (HSA) was systematically investigated via spectroscopy, microcalorimetry and molecular simulations. Steady-state fluorescence and time-resolved fluorescence spectrometry illustrated that the fluorescence quenching type of AB to HSA was static and caused by the formation of ground state AB-HSA complex. Isothermal titration calorimetry (ITC) combined with fluorescence spectra revealed that the affinity of AB to the subdomain IIA of HSA was moderate with a binding constant in the order of 104. Molecular docking analysis and thermodynamic parameters demonstrated that this combination was maintained by hydrogen bonding along with van der Waals force and hydrophobic force. Circular dichroism and three-dimensional (3D) fluorescence showed that AB increased the hydrophobicity of Trp residue and the α-helix content of HSA by 1.99%. Microdifferential scanning calorimetry revealed that the addition of AB enhanced the thermal stability of HSA. The action forces, binding stability, binding sites, and protein structure of the AB-HSA system were evaluated via molecular dynamics analysis in the simulated environment. On the basis of molecular docking, MD simulation constructed a more reliable 3D model of the AB-HSA complex in terms of spatial structure.
Collapse
Affiliation(s)
- Shuangshuang Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Ruixue Gan
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Ludan Zhao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Qiaomei Sun
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Hongzhao Xiang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Xi Xiang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| | - Gang Zhao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Hui Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
4
|
Gan Q, Wang J, Hu J, Lou G, Xiong H, Peng C, Zheng S, Huang Q. The role of diosgenin in diabetes and diabetic complications. J Steroid Biochem Mol Biol 2020; 198:105575. [PMID: 31899316 DOI: 10.1016/j.jsbmb.2019.105575] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/10/2019] [Accepted: 12/25/2019] [Indexed: 01/23/2023]
Abstract
Diabetes mellitus is a chronic and common metabolic disease that seriously endangers human health. Hyperglycemia and long-term metabolic disorders in diabetes will cause damage to the whole body tissues and organs, resulting in serious complications. Nowadays, drugs for treating diabetes on the market has strong side effects, new treatments thus are urgently needed. Natural therapy of natural ingredients is a promising avenue, this is because natural ingredients are safer and they also show strong activity in the treatment of diabetes. Diosgenin is such a very biologically active natural steroidal sapogenin. The research of diosgenin in the treatment of diabetes and its complications has been widely reported. This article reviews the effects of diosgenin through multiple targets and multiple pathways in diabetes and its complications which including diabetic nephropathy, diabetic liver disease, diabetic neuropathy, diabetic vascular disease, diabetic cardiomyopathy, diabetic reproductive dysfunction, and diabetic eye disease.
Collapse
Affiliation(s)
- Qingxia Gan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Ju Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Guanhua Lou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Haijun Xiong
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Chengyi Peng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| | - Song Zheng
- Sichuan Kaimei Chinese Medicine Co., Ltd, No.155, Section 1, Fuxing Road, Longmatan District, Luzhou, 646000, China.
| | - Qinwan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China; State Key Laboratory of Traditional Chinese Medicine Processing Technology, State Administration of Traditional Chinese Medicine, No.1166, Liutai Road, Wenjiang District, Chengdu, 611137, China.
| |
Collapse
|