1
|
Illes-Toth E, Stubbs CJ, Sisley EK, Bellamy-Carter J, Simmonds AL, Mize TH, Styles IB, Goodwin RJA, Cooper HJ. Quantitative Characterization of Three Carbonic Anhydrase Inhibitors by LESA Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1168-1175. [PMID: 35675480 PMCID: PMC9264382 DOI: 10.1021/jasms.2c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Liquid extraction surface analysis (LESA) coupled to native mass spectrometry (MS) presents unique analytical opportunities due to its sensitivity, speed, and automation. Here, we examine whether this tool can be used to quantitatively probe protein-ligand interactions through calculation of equilibrium dissociation constants (Kd values). We performed native LESA MS analyses for a well-characterized system comprising bovine carbonic anhydrase II and the ligands chlorothiazide, dansylamide, and sulfanilamide, and compared the results with those obtained from direct infusion mass spectrometry and surface plasmon resonance measurements. Two LESA approaches were considered: In one approach, the protein and ligand were premixed in solution before being deposited and dried onto a solid substrate for LESA sampling, and in the second, the protein alone was dried onto the substrate and the ligand was included in the LESA sampling solvent. Good agreement was found between the Kd values derived from direct infusion MS and LESA MS when the protein and ligand were premixed; however, Kd values determined from LESA MS measurements where the ligand was in the sampling solvent were inconsistent. Our results suggest that LESA MS is a suitable tool for quantitative analysis of protein-ligand interactions when the dried sample comprises both protein and ligand.
Collapse
Affiliation(s)
- Eva Illes-Toth
- School
of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Christopher J. Stubbs
- Mechanistic
and Structural Biology, Discovery Sciences,
R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Emma K. Sisley
- School
of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | - Anna L. Simmonds
- School
of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Todd H. Mize
- School
of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Iain B. Styles
- School
of Computer Science and Centre of Membrane Proteins and Receptors
(COMPARE), University of Birmingham, Birmingham B15 2TT, United Kingdom
- The Alan Turing Institute, London NW1 2DB, United Kingdom
- University of Nottingham, Midlands NG7 2RD, United Kingdom
| | - Richard J. A. Goodwin
- Imaging and
Data Analytics, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals
R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Helen J. Cooper
- School
of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
2
|
Krasavin M, Stavniichuk R, Zozulya S, Borysko P, Vullo D, Supuran CT. Discovery of Strecker-type α-aminonitriles as a new class of human carbonic anhydrase inhibitors using differential scanning fluorimetry. J Enzyme Inhib Med Chem 2016; 31:1707-11. [PMID: 26983069 DOI: 10.3109/14756366.2016.1156676] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A new type of carbonic anhydrase inhibitors was identified via differential scanning fluorimetry (DSF) screening. The compounds displayed interesting inhibition profile against human carbonic anhydrase isoforms I, II, IX and XII with an obvious selectivity displayed by one compound toward carbonic anhydrase (CA) IX, an established anti-cancer target. A hypothetical mechanism of inhibitory action by the Strecker-type α-aminonitriles has been proposed.
Collapse
Affiliation(s)
- Mikhail Krasavin
- a Institute of Chemistry and Translational Biomedicine, Saint Petersburg State University , Peterhof , Russian Federation
| | | | - Sergey Zozulya
- b Enamine Ltd , Kyiv , Ukraine .,c Taras Shevchenko National University , Kyiv , Ukraine , and
| | | | - Daniela Vullo
- d Neurofarba Department, Universita degli Studi di Firenze , Florence , Italy
| | - Claudiu T Supuran
- d Neurofarba Department, Universita degli Studi di Firenze , Florence , Italy
| |
Collapse
|
3
|
Adolf-Bryfogle J, Dunbrack Jr. RL. The PyRosetta Toolkit: a graphical user interface for the Rosetta software suite. PLoS One 2013; 8:e66856. [PMID: 23874400 PMCID: PMC3706480 DOI: 10.1371/journal.pone.0066856] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/11/2013] [Indexed: 01/25/2023] Open
Abstract
The Rosetta Molecular Modeling suite is a command-line-only collection of applications that enable high-resolution modeling and design of proteins and other molecules. Although extremely useful, Rosetta can be difficult to learn for scientists with little computational or programming experience. To that end, we have created a Graphical User Interface (GUI) for Rosetta, called the PyRosetta Toolkit, for creating and running protocols in Rosetta for common molecular modeling and protein design tasks and for analyzing the results of Rosetta calculations. The program is highly extensible so that developers can add new protocols and analysis tools to the PyRosetta Toolkit GUI.
Collapse
Affiliation(s)
- Jared Adolf-Bryfogle
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- Drexel University College of Medicine, Program in Molecular and Cell Biology and Genetics, Philadelphia, Pennsylvania, United States of America
| | - Roland L. Dunbrack Jr.
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|