1
|
Amini F, Abbas KI, Ghasemi JB. Molecular modeling approach in design of new scaffold of α-glucosidase inhibitor as antidiabetic drug. Biochem Biophys Rep 2025; 42:101995. [PMID: 40248138 PMCID: PMC12005936 DOI: 10.1016/j.bbrep.2025.101995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/19/2025] Open
Abstract
Targeting α-glucosidase is essential for diabetes treatment, as it inhibits carbohydrate breakdown in the small intestine, helping to control blood glucose levels. This study aimed to design and computationally analyze sugar-based compounds as potent α-glucosidase inhibitors. We screened the BindingDB database with pharmacophore modeling in Pharmit, achieving an enrichment factor of 50.6, and evaluated ligand binding through molecular docking simulations, identifying key functional groups for optimal interactions. The compound 1b demonstrated strong inhibitory potential, binding to residues similar to those targeted by acarbose, with a GoldScore fitness of 60.57 compared to acarbose's 50.56 (IC50 = 0.750 nM). A subset of compounds underwent 3D-QSAR modeling, revealing functional groups that enhance inhibitory activity, supported by high statistical quality (q2 of 0.571, r2 of 0.926, and F-values of 62.569 for CoMFA and 51.478 for CoMFA-RF). Based on these findings, we designed a novel scaffold through scaffold hopping, incorporating a glycosyl group to target the enzyme's active site, an amine group to improve binding affinity, and two phenyl groups that enhance inhibitory activity. Molecular docking and dynamics simulations further validated the stability and efficacy of this scaffold, showing superior interaction with α-glucosidase compared to acarbose. ADME property predictions suggested favorable pharmacokinetic properties, supporting this scaffold's potential for development as a diabetes treatment.
Collapse
Affiliation(s)
- Fatemeh Amini
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Khansa Ismaeal Abbas
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Jahan B. Ghasemi
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| |
Collapse
|
2
|
Ahmed RF, Mahmoud WR, Abdelgawad NM, Belal A, Alsantali RI, Said MF. Insight on novel sulfamoylphenyl pyrazole derivatives as anticancer carbonic anhydrase inhibitors. Mol Divers 2024:10.1007/s11030-024-11023-3. [PMID: 39528902 DOI: 10.1007/s11030-024-11023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
As another part continue for our previous study, variable substituted pyrazoles bearing sulfamoylphenyl moiety were synthesized and screened against two cancer related human carbonic anhydrase (hCA) isoforms and acetazolamide (AAZ) used as a reference standard. Some compounds as 4e and 6c manifested a promising inhibitory activity against both isoforms (KI = 0.072, 0.081 and 0.073, 0.095 µM), respectively. While others as 4a and 5e showed inhibitory activity against hCA IX only (KI = 0.062, 0.04 µM) or against hCA XII only as compound 5b (KI = 0.106 µM) compared to AAZ (KI = 0.065, 0.046 µM), respectively. Also, the anticancer efficacy against 60 cancer cell lines for the target compounds was assessed, and the most promising ones were 4d and 5a-d. Further investigation of the anticancer activity of 5b on MCF-7 cell line explored (IC50 = 5.21 µM) compared to doxorubicin (IC50 = 11.58 µM). Moreover, compound 5b was exposed to cell cycle analysis and apoptotic assay on MCF-7 breast cancer cell line under both normal and hypoxic conditions at its IC50 concentration with elevation of total apoptotic cells % in MCF-7 relative to the control cells; respectively. Finally, molecular modelling simulations rationalized the in vitro testing results.
Collapse
Affiliation(s)
- Rehab F Ahmed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt.
| | - Walaa R Mahmoud
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Nagwa M Abdelgawad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O.Box 11099, 21944, Taif, Saudi Arabia
| | - Reem I Alsantali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O.Box 11099, 21944, Taif, Saudi Arabia
| | - Mona F Said
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| |
Collapse
|
3
|
Faris A, Hadni H, Ibrahim IM, Elhallaoui M. In silico discovery of potent and selective Janus kinase 3 (JAK3) inhibitors through 3D-QSAR, covalent docking, ADMET analysis, molecular dynamics simulations, and binding free energy of pyrazolopyrimidine derivatives. J Biomol Struct Dyn 2024; 42:4817-4833. [PMID: 37338041 DOI: 10.1080/07391102.2023.2222839] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023]
Abstract
Rheumatoid arthritis is a prevalent and debilitating chronic disease worldwide. Targeting Janus kinase 3 (JAK3) has emerged as a crucial molecular strategy to treat this condition. In this study, we employed a comprehensive theoretical approach that included 3D-QSAR, covalent docking, ADMET, and molecular dynamics to propose and optimize new anti-JAK3 compounds. We investigated a series of 28 1H-pyrazolo[3.4-d]pyrimidin-4-amino inhibitors and developed a highly accurate 3D-QSAR model using comparative molecular similarity index analysis (COMSIA). The model predicted with Q2 = 0.59, R2 = 0.96, and R2(Pred) = 0.89, was validated using Y-randomization and external validation methods. Our covalent docking studies identified T3 and T5 as highly potent inhibitors of JAK3 compared to the reference ligand 17. Additionally, we evaluated the ADMET properties and drug similarity of our newly developed compounds and reference ligand, providing critical insights for further optimization of anti-JAK3 medications. Furthermore, MM-GBSA analysis showed promising results for the designed compounds. Finally, we validated our docking results using molecular dynamics simulations, which confirmed the stability of hydrogen bonding contacts with key residues required to block JAK3 activity. Our findings offer new chemical scaffolds and insights that could lead to the development of novel and effective JAK3 therapeutic targets for treating rheumatoid arthritis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdelmoujoud Faris
- LIMAS, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Hanine Hadni
- LIMAS, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Menana Elhallaoui
- LIMAS, Department of Chemical Sciences, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
4
|
Figueredo KC, Guex CG, Graiczik J, Reginato FZ, Engelmann AM, Andrade CMD, Timmers LFSM, Bauermann LDF. Caffeic acid and ferulic acid can improve toxicological damage caused by iron overload mediated by carbonic anhydrase inhibition. Drug Chem Toxicol 2024; 47:147-155. [PMID: 36444844 DOI: 10.1080/01480545.2022.2152043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/30/2022]
Abstract
The iron ion is an essential element for most forms of life, however, it can damage biological systems when found in free form. Chelation therapy is very important, but it is precarious. Caffeic and ferulic acid are antioxidant compounds with many properties described in research such as anti-inflammatory, antiobesogenic, antithrombotic, vasodilator, and anti-tumor. The aim of the study was to evaluate presenting an in silico approach on the toxicity and bioavailability of caffeic and ferulic acid, subsequently, evaluating them in an iron overload model in vivo and providing a pharmacophoric model through molecular docking. The predictive in silico test did not show relevant toxicity of the compounds, therefore, the in vivo test was performed. The rats received dextran iron and the test groups received caffeic and ferulic acid orally for six weeks. Biochemical, hematological parameters, and tissue oxidative stress marker were analyzed. The experimental model showed increased serum iron levels and changes in several serum parameters such as glucose (215.8 ± 20.3 mg/dL), ALT (512.2 ± 128.7 U/L), creatine kinase (186.8 ± 30.1 U/L), and creatine kinase isoform MB (373.3 ± 69.7 U/L). Caffeic acid and, to a lessed degree, ferullic acid, attenuated the effects of iron overload on the rat serum biochemical parameters. Docking showed a pharmacophoric model where carbonic anhydrase interacted with the test molecules and caffeic acid showed less energy expenditure in this interaction. The results illustrate a new therapeutic action of phenolic compounds on iron overload. The possible interference of carbonic anhydrase in iron metabolism needs to be elucidated.
Collapse
Affiliation(s)
| | - Camille Gaube Guex
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| | - James Graiczik
- Graduate Program in Pharmacy, University of Federal University of Santa Maria, Santa Maria, Brazil
| | | | | | | | | | - Liliane De Freitas Bauermann
- Graduate Program in Pharmaceutical Sciences, Federal University of Santa Maria, Santa Maria, Brazil
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
5
|
Ahmed RF, Mahmoud WR, Abdelgawad NM, Fouad MA, Said MF. Exploring novel anticancer pyrazole benzenesulfonamides featuring tail approach strategy as carbonic anhydrase inhibitors. Eur J Med Chem 2023; 261:115805. [PMID: 37748386 DOI: 10.1016/j.ejmech.2023.115805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/27/2023]
Abstract
This study aimed to design potent carbonic anhydrase inhibitors (CAIs) based on pyrazole benzenesulfonamide core. Nine series of substituted pyrazole benzenesulfonamide compounds were synthesized with variable groups like sulphamoyl group as in compounds 4a-e, its bioisosteric carboxylic acid as in compounds 5a-e and 8e, ethyl carboxylate ester as in compounds 6a-e and 9a-e, which were designed as potential prodrugs, isothiazole ring as in compound 7, hydrazide derivative 10e, hydroxamic acid derivatives 11a-e and semicarbazide derivatives 12a-c,e. All the synthesized compounds were investigated for their carbonic anhydrase (CA) inhibitory activity against two human CA isoforms hCA IX and hCA XII and compared to acetazolamide (AAZ). Also, the compounds were assessed for their anticancer activity against 60 cancer cell lines according to the US NCI protocol. Compounds 4b, 5b, 5d, 5e, 6b, 9b, 9e and 11b revealed significant inhibitory activity against both isoforms hCA IX and hCA XII, while 6e, 9d, 11d and 11e showed significant inhibitory activity against hCA XII only compared to acetazolamide as a reference. This would highlight these compounds as promising anticancer drugs. Moreover, compound 6e revealed a remarkable cytostatic activity against CNS cancer cell line (SF-539; TGI = 5.58 μM), renal cancer cell line (786-0; TGI = 4.32 μM) and breast cancer cell line (HS 578 T; TGI = 5.43 μM). Accordingly, compound 6e was subjected to cell cycle analysis and apoptotic assay on the abovementioned cell lines at the specified GI50 (0.45, 0.89 and 1.18 μM, respectively). Also, it revealed the increment of total apoptotic cells percentage in 786-0 (53.19%), SF-539 (46.11%) and HS 578 T (43.55%) relative to the control cells (2.07, 2.64 and 2.52%, respectively). In silico prediction of BBB permeability showed that most of the calculations for compound 6e resulted as BBB (+), which is required for a compound targeting CNS. Further, the interaction of the most active compounds with the key amino acids in the active sites of hCA IX and hCA XII was highlighted by molecular docking analysis.
Collapse
Affiliation(s)
- Rehab F Ahmed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Walaa R Mahmoud
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Nagwa M Abdelgawad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Marwa A Fouad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt; Pharmaceutical Chemistry Department, School of Pharmacy, Newgiza University, Newgiza, Km 22 Cairo-Alexandria Desert Road, Cairo, Egypt
| | - Mona F Said
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt.
| |
Collapse
|
6
|
Computer-Aided and AILDE Approaches to Design Novel 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors. Int J Mol Sci 2022; 23:ijms23147822. [PMID: 35887168 PMCID: PMC9320391 DOI: 10.3390/ijms23147822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 01/19/2023] Open
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a pivotal enzyme in tocopherol and plastoquinone synthesis and a potential target for novel herbicides. Thirty-five pyridine derivatives were selected to establish a Topomer comparative molecular field analysis (Topomer CoMFA) model to obtain correlation information between HPPD inhibitory activity and the molecular structure. A credible and predictive Topomer CoMFA model was established by "split in two R-groups" cutting methods and fragment combinations (q2 = 0.703, r2 = 0.957, ONC = 6). The established model was used to screen out more active compounds and was optimized through the auto in silico ligand directing evolution (AILDE) platform to obtain potential HPPD inhibitors. Twenty-two new compounds with theoretically good HPPD inhibition were obtained by combining the high-activity contribution substituents in the existing molecules with the R-group search via Topomer search. Molecular docking results revealed that most of the 22 fresh compounds could form stable π-π interactions. The absorption, distribution, metabolism, excretion and toxicity (ADMET) prediction and drug-like properties made 9 compounds potential HPPD inhibitors. Molecular dynamics simulation indicated that Compounds Y12 and Y14 showed good root mean square deviation (RMSD) and root mean square fluctuation (RMSF) values and stability. According to the AILDE online verification, 5 new compounds with potential HPPD inhibition were discovered as HPPD inhibitor candidates. This study provides beneficial insights for subsequent HPPD inhibitor design.
Collapse
|
7
|
Cytotoxic Evaluation, Molecular Docking, and 2D-QSAR Studies of Dihydropyrimidinone Derivatives as Potential Anticancer Agents. JOURNAL OF ONCOLOGY 2022; 2022:7715689. [PMID: 35509846 PMCID: PMC9061032 DOI: 10.1155/2022/7715689] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 12/21/2022]
Abstract
The diverse pharmacological role of dihydropyrimidinone scaffold has made it to be an interesting drug target. Because of the high incidence and mortality rate of breast cancer, there is a dire need of discovering new pharmacotherapeutic agents in managing this disease. A series of twenty-two derivatives of 6-(chloromethyl)-4-(4-hydroxyphenyl)-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (3a-3k) and ethyl 6-(chloromethyl)-4-(2-hydroxyphenyl)-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (4a-4k) synthesized in a previous study were evaluated for their anticancer potential against breast cancer cell line. Molecular docking studies were performed to analyze the binding mode and interaction pattern of these compounds against nine breast cancer target proteins. The in vitro cell proliferation assay was performed against the breast cancer cell line MCF-7. The structure activity relationship of these compounds was further studied using QSARINS. Among nine proteins, the docking analysis revealed efficient binding of compounds 4f, 4e, 3e, 4g, and 4h against all target proteins. The in vitro cytotoxic assay revealed significant anticancer activity of compound 4f having
of 2.15 μM. The compounds 4e, 3e, 4g, and 4h also showed anticancer activities with
of 2.401, 2.41, 2.47 and 2.33 μM, respectively. The standard tamoxifen showed
1.88 μM. The 2D qualitative structure-activity relationship (QSAR) analysis was also carried out to identify potential breast cancer targets through QSARINS. The final QSAR equation revealed good predictivity and statistical validation
and
values for the model obtained from QSARINS was 0.98 and 0.97, respectively. The active compounds showed very good anticancer activities, and the binding analysis has revealed stable hydrogen bonding of these compounds with the target proteins. Moreover, the QSAR analysis has predicted useful information on the structural requirement of these compounds as anticancer agents with the importance of topological and autocorrelated descriptors in effecting the cancer activities.
Collapse
|
8
|
Swain B, Singh P, Angeli A, Sahoo SK, Yaddanapudi VM, T Supuran C, Arifuddin M. Efficient One-pot Synthesis of 3,3-di(indolyl)indolin-2-ones from Isatin and Indole Catalyzed by VOSO4 as Non-Sulfonamide Carbonic Anhydrase Inhibitors. Anticancer Agents Med Chem 2022; 22:2358-2366. [PMID: 35114927 DOI: 10.2174/1871520622666220202112014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/19/2021] [Accepted: 12/02/2021] [Indexed: 11/22/2022]
Abstract
Background A high yielding green protocol has been developed and delineated for the synthesis of 3,3-di(indolyl)indolin-2-ones, potentially bioactive compounds, involving one pot aqueous medium condensation of isatin with indole in the presence of VOSO4. The synthesized compounds were screened for their carbonic anhydrase inhibitory activity against human (h) isoforms hCA I, hCA II, hCA IX and hCA XII. These non-sulfonamide derivatives selectively inhibited hCA II in the micromolar range. Objective To develop a high yielding green protocol to synthesize 3,3-diindolyl oxindole derivatives using water as solvent media and screening of the synthesized molecules for their carbonic anhydrase inhibitory activity. Methods The target compound is obtained by taking isatin, indole, VOSO4and H2O in one-pot at 70 oC. Results The designed molecules were synthesized by using the new method. The molecules were screened for their CA inhibitory activity which shows selective inhibition toward hCA II.The result shown an excellent yield without any loss or decrease in catalytic activity, hence proved the performance and recyclability of the catalyst. Conclusion An efficient, simple and green protocol was established that provides a facile and straightforward approach for the preparation of 3,3-diindolyl oxindole derivatives (3a-r) from Isatin and Indole by using 10 mol % VOSO4 in high yields in a short period of time by a one-pot coupling reaction. Furthermore, the catalyst can also be recovered and reused for three consecutive catalytic cycle without any loss of its efficiency which was confirmed by performing the experiment with 3a. The newly synthesized molecules (3a-r) were screened for their carbonic anhydrase inhibition potency against four isoforms, hCA I, II, IX and XII and most of the compounds were found potent against hCA II with potency low to submicromolar range.
Collapse
Affiliation(s)
- Baijayantimala Swain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Priti Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Andrea Angeli
- UniversitàdegliStudi di Firenze, Neurofarba Dept., Sezione di ScienzeFarmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Santosh Kumar Sahoo
- Process chemistry Process Technology, Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Venkata Madhavi Yaddanapudi
- Process chemistry Process Technology, Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| | - Claudiu T Supuran
- UniversitàdegliStudi di Firenze, Neurofarba Dept., Sezione di ScienzeFarmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Mohammed Arifuddin
- epartment of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad 500037, India
| |
Collapse
|
9
|
Jian-Bo T, Xing Z, Shuai B, Ding L, Tian-Hao W. Topomer CoMFA and HQSAR Study on Benzimidazole Derivative as NS5B Polymerase Inhibitor. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180818666210804125607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
In recent years, the number of people infected with the hepatitis C virus
(HCV) is increasing rapidly. This has become a major threat to global health, therefore, new anti-
HCV drugs are urgently needed. HCV NS5B polymerase is an RNA-dependent RNA polymerase
(RdRp), which plays an important role in virus replication, and can effectively prevent the replication
of HCV sub-genomic RNA in daughter cells. It is considered a very promising HCV therapeutic
target for the design of anti-HCV drugs.
Methods:
In order to explore the relationship between the structure of benzimidazole derivative and
its inhibitory activity on NS5B polymerase, holographic quantitative structure-activity relationship
(HQSAR) and Topomer comparative molecular field analysis (CoMFA) were used to establish benzimidazole
QSAR model of derivative inhibitors.
Results:
The results show that for the Topomer CoMFA model, the cross-validation coefficient q2
value is 0.883, and the non-cross-validation coefficient r2 value is 0.975. The model is reasonable,
reliable, and has a good predictive ability. For the HQSAR model, the cross-validated q2 value is
0.922, and the uncross-validated r2 value is 0.971, indicating that the model data fit well and has a
high predictive ability. Through the analysis of the contour map and color code diagram, 40 new
benzimidazole inhibitor molecules were designed, and all of them have higher activity than template
molecules, and the new molecules have significant interaction sites with protein 3SKE.
Conclusion:
The 3D-QSAR model established by Topomer CoMFA and HQSAR has good prediction
results and the statistical verification is valid. The newly designed molecules and docking results
provide theoretical guidance for the synthesis of new NS5B polymerase inhibitors and for the identification
of key residues that the inhibitors bind to NS5B, which helps to better understand their inhibitory
mechanism. These findings are helpful for the development of new anti-HCV drugs.
Collapse
Affiliation(s)
- Tong Jian-Bo
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi\'an 710021, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi\'an, 710021, China
| | - Zhang Xing
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi\'an 710021, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi\'an, 710021, China
| | - Bian Shuai
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi\'an 710021, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi\'an, 710021, China
| | - Luo Ding
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi\'an 710021, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi\'an, 710021, China
| | - Wang Tian-Hao
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi\'an 710021, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Xi\'an, 710021, China
| |
Collapse
|
10
|
Zhang AM, Wei N, Liu XF, Wu MG, Xuan GS. Inhibitory Evaluation and Molecular Docking Analysis of Benzenesulfonamides on Carbonic Anhydrase II. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021010283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Khamouli S, Belaidi S, Ouassaf M, Lanez T, Belaaouad S, Chtita S. Multi-combined 3D-QSAR, docking molecular and ADMET prediction of 5-azaindazole derivatives as LRRK2 tyrosine kinase inhibitors. J Biomol Struct Dyn 2020; 40:1285-1298. [DOI: 10.1080/07391102.2020.1824815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Saida Khamouli
- Group of Computational and Medicinal Chemistry, LMCE Laboratory, University of Biskra, Biskra, Algeria
| | - Salah Belaidi
- Group of Computational and Medicinal Chemistry, LMCE Laboratory, University of Biskra, Biskra, Algeria
| | - Mebarka Ouassaf
- Group of Computational and Medicinal Chemistry, LMCE Laboratory, University of Biskra, Biskra, Algeria
| | - Touhami Lanez
- VTRS Laboratory, Faculty of Sciences and Technology, University of El Oued, El Oued, Algeria
| | - Said Belaaouad
- Laboratory of Physical Chemistry of Materials, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Sidi Othman, Casablanca, Morocco
| | - Samir Chtita
- Laboratory of Physical Chemistry of Materials, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Sidi Othman, Casablanca, Morocco
| |
Collapse
|
12
|
Xu X, Xu B, Wang X, Li J. Quantitative structure-activity relationships study of a series of niacinamide analogues as androgen receptor antagonists. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
13
|
Sankar M, K L, Jeyachandran S, Pandi B. Screening of inhibitors as potential remedial against Ebolavirus infection: pharmacophore-based approach. J Biomol Struct Dyn 2020; 39:395-408. [DOI: 10.1080/07391102.2020.1715260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Muthumanickam Sankar
- Cancer Genetics & Molecular Biology Laboratory, Department of Bioinformatics, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Langeswaran K
- Cancer Genetics & Molecular Biology Laboratory, Department of Bioinformatics, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Sangavi Jeyachandran
- Cancer Genetics & Molecular Biology Laboratory, Department of Bioinformatics, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Boomi Pandi
- Nanotechnology Laboratory, Department of Bioinformatics, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
14
|
Al-Sanea MM, Elkamhawy A, Paik S, Bua S, Ha Lee S, Abdelgawad MA, Roh EJ, Eldehna WM, Supuran CT. Synthesis and biological evaluation of novel 3-(quinolin-4-ylamino)benzenesulfonamidesAQ3 as carbonic anhydrase isoforms I and II inhibitors. J Enzyme Inhib Med Chem 2019; 34:1457-1464. [PMID: 31411080 PMCID: PMC6713088 DOI: 10.1080/14756366.2019.1652282] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022] Open
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are crucial metalloenzymes that are involved in diverse bioprocesses. We report the synthesis and biological evaluation of novel series of benzenesulfonamides incorporating un/substituted ethyl quinoline-3-carboxylate moieties. The newly synthesised compounds were in vitro evaluated as inhibitors of the cytosolic human (h) isoforms hCA I and II. Both isoforms hCA I and II were inhibited by the quinolines reported here in variable degrees: hCA I was inhibited with KIs in the range of 0.966-9.091 μM, whereas hCA II in the range of 0.083-3.594 μM. The primary 7-chloro-6-flouro substituted sulphfonamide derivative 6e (KI = 0.083 μM) proved to be the most active quinoline in inhibiting hCA II, whereas, its secondary sulfonamide analog failed to inhibit the hCA II up to 10 μM, confirming the crucial role of the primary sulphfonamide group, as a zinc-binding group for CA inhibitory activity.
Collapse
Affiliation(s)
- Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Ahmed Elkamhawy
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Sora Paik
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Silvia Bua
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - So Ha Lee
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Beni-Suef University, Beni-Suef, Egypt
| | - Eun Joo Roh
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Claudiu T. Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| |
Collapse
|
15
|
Swain B, Angeli A, Angapelly S, Thacker PS, Singh P, Supuran CT, Arifuddin M. Synthesis of a new series of 3-functionalised-1-phenyl-1,2,3-triazole sulfamoylbenzamides as carbonic anhydrase I, II, IV and IX inhibitors. J Enzyme Inhib Med Chem 2019; 34:1199-1209. [PMID: 31237458 PMCID: PMC6598542 DOI: 10.1080/14756366.2019.1629432] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/02/2019] [Accepted: 06/04/2019] [Indexed: 01/18/2023] Open
Abstract
The synthesis of a novel series of 3-functionalised benzenesulfonamides incorporating phenyl-1,2,3-triazole with an amide linker was achieved by using the "click-tail" approach. The new compounds, including the intermediates, were assayed as inhibitors of human carbonic anhydrase (CA, EC 4.2.1.1) isoforms hCA I and II (cytosolic isoforms) and also for hCA IV and IX (transmembrane isoforms) taking acetazolamide as standard drug. Most of these compounds exhibited excellent activity against all these isoforms. hCA I was inhibited with Kis in the range of 50.8-966.8 nM, while the glaucoma associated hCA II was inhibited with Kis in the range of 6.5-760.0 nM. Isoform hCA IV was inhibited with Kis in the range of 65.3-957.5 nM, whereas the tumor associated hypoxia induced hCA IX was inhibited with Kis in the range of 30.8-815.9 nM. The structure activity relationship study for the 3-functionalised-1-phenyl-1,2,3-triazole sulfamoylbenzamides against these isoforms was also inferred from the results.
Collapse
Affiliation(s)
- Baijayantimala Swain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Andrea Angeli
- Neurofarba Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Srinivas Angapelly
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Pavitra S. Thacker
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Priti Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Claudiu T. Supuran
- Neurofarba Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| |
Collapse
|
16
|
Akocak S, Lolak N, Bua S, Nocentini A, Supuran CT. Activation of human α-carbonic anhydrase isoforms I, II, IV and VII with bis-histamine schiff bases and bis-spinaceamine substituted derivatives. J Enzyme Inhib Med Chem 2019; 34:1193-1198. [PMID: 31237157 PMCID: PMC6598482 DOI: 10.1080/14756366.2019.1630616] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A series of histamine bis-Schiff bases and bis-spinaceamine derivatives were synthesised and investigated as activators of four human (h) carbonic anhydrase (CA, EC 4.2.1.1) isoforms, the cytosolic hCA I, II and VII, and the membrane-associated hCA IV. All isoforms were effectively activated by the new derivatives, with activation constants in the range of 4.73–10.2 µM for hCA I, 6.15–42.1 µM for hCA II, 2.37–32.7 µM for hCA IV and 32 nM–18.7 µM for hCA VII, respectively. The nature of the spacer between the two histamine/spinaceamine units of these molecules was the main contributor to the diverse activating efficacy, with a very different fine tuning for the diverse isoforms. As CA activators recently emerged as interesting agents for enhancing cognition, in the management of CA deficiencies, or for therapy memory and artificial tissues engineering, our compounds may be considered as candidates for such applications.
Collapse
Affiliation(s)
- Suleyman Akocak
- a Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Adiyaman University , Adiyaman , Turkey
| | - Nabih Lolak
- a Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Adiyaman University , Adiyaman , Turkey
| | - Silvia Bua
- b Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Sesto Fiorentino , Italy
| | - Alessio Nocentini
- b Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Sesto Fiorentino , Italy
| | - Claudiu T Supuran
- b Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Sesto Fiorentino , Italy
| |
Collapse
|
17
|
Wang Y, Guo H, Tang G, He Q, Zhang Y, Hu Y, Wang Y, Lin Z. A selectivity study of benzenesulfonamide derivatives on human carbonic anhydrase II/IX by 3D-QSAR, Molecular Docking and Molecular Dynamics Simulation. Comput Biol Chem 2019; 80:234-243. [DOI: 10.1016/j.compbiolchem.2019.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/14/2019] [Accepted: 03/12/2019] [Indexed: 10/27/2022]
|