1
|
Zhong J, Zhu Q, Soudackov AV, Hammes-Schiffer S. Hydrogen Tunneling and Conformational Motions in Nonadiabatic Proton-Coupled Electron Transfer between Interfacial Tyrosines in Ribonucleotide Reductase. J Am Chem Soc 2025; 147:4459-4468. [PMID: 39841588 PMCID: PMC11829447 DOI: 10.1021/jacs.4c15756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Ribonucleotide reductase (RNR) is essential for DNA synthesis and repair in all living organisms. The mechanism of E. coli RNR requires long-range radical transport through a proton-coupled electron transfer (PCET) pathway spanning two different protein subunits. Herein, the direct PCET reaction between the interfacial tyrosine residues, Y356 and Y731, is investigated with a vibronically nonadiabatic theory that treats the transferring proton and all electrons quantum mechanically. The input quantities to the PCET rate constant expression are computed with a combination of density functional theory and molecular dynamics simulations. The calculations highlight the importance of hydrogen tunneling in this PCET reaction. Compression of the distance between the proton donor and acceptor oxygen atoms of the interfacial tyrosine residues is essential to facilitate hydrogen tunneling by increasing the overlap between the reactant and product proton vibrational wave functions. This compression occurs by thermal conformational fluctuations of these interfacial tyrosine residues. N733 and R411 are identified as key residues that can hydrogen bond to Y731 and Y356, respectively, and thereby compete with the hydrogen-bonding interaction between Y731 and Y356 required for direct PCET. Understanding the roles of hydrogen tunneling and conformational motions in this interfacial PCET reaction, as well as identifying other residues that may impact the kinetics, is important for targeted protein engineering efforts to modulate RNR activity.
Collapse
Affiliation(s)
- Jiayun Zhong
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Qiwen Zhu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | | | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
2
|
Zhong J, Reinhardt CR, Hammes-Schiffer S. Direct Proton-Coupled Electron Transfer between Interfacial Tyrosines in Ribonucleotide Reductase. J Am Chem Soc 2023; 145:4784-4790. [PMID: 36802630 PMCID: PMC10344599 DOI: 10.1021/jacs.2c13615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Ribonucleotide reductase (RNR) regulates DNA synthesis and repair in all organisms. The mechanism of Escherichia coli RNR requires radical transfer over a proton-coupled electron transfer (PCET) pathway spanning ∼32 Å across two protein subunits. A key step along this pathway is the interfacial PCET reaction between Y356 in the β subunit and Y731 in the α subunit. Herein, this PCET reaction between two tyrosines across an aqueous interface is explored with classical molecular dynamics and quantum mechanical/molecular mechanical (QM/MM) free energy simulations. The simulations suggest that the water-mediated mechanism involving double proton transfer through an intervening water molecule is thermodynamically and kinetically unfavorable. The direct PCET mechanism between Y356 and Y731 becomes feasible when Y731 is flipped toward the interface and is predicted to be approximately isoergic with a relatively low free energy barrier. This direct mechanism is facilitated by the hydrogen bonding of water to both Y356 and Y731. These simulations provide fundamental insights into radical transfer across aqueous interfaces.
Collapse
Affiliation(s)
- Jiayun Zhong
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Clorice R. Reinhardt
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | | |
Collapse
|
3
|
Kulsh J. Biochemistry-Not Oncogenes-May Demystify and Defeat Cancer. Oncol Ther 2023:10.1007/s40487-023-00221-y. [PMID: 36781712 DOI: 10.1007/s40487-023-00221-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/24/2023] [Indexed: 02/15/2023] Open
Abstract
The presence of mutated genes strongly correlates with the incidence of cancer. Decades of research, however, has not yielded any specific causative gene or set of genes for the vast majority of cancers. The Cancer Genome Atlas program was supposed to provide clarity, but it only gave much more data without any accompanying insight into how the disease begins and progresses. It may be time to notice that epidemiological studies consistently show that the environment, not genes, has the principal role in causing cancer. Since carcinogenic chemicals in our food, drink, air, and water are the primary culprits, we need to look at the biochemistry of cancer, with a focus on enzymes that invariably facilitate transformations in a cell. In particular, attention should be paid to the rate-limiting enzyme in DNA synthesis, ribonucleotide reductase (RnR), whose activity is tightly linked to tumor growth. Besides circumstantial evidence that cancer is induced at this enzyme's vulnerable free-radical-containing active site by various carcinogens, its role in initiating retinoblastoma and human papillomavirus (HPV)-related cervical cancers has been well documented in recent years. Blocking the activity of malignant RnR is a certain way to arrest cancer.
Collapse
Affiliation(s)
- Jay Kulsh
- Independent Scientist, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Omoboyowa DA, Bodun DS, Saliu JA. Structure-based in silico investigation of antagonists of human ribonucleotide reductase from Annona muricata. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2023.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
5
|
Islam MA, Barshetty MM, Srinivasan S, Dudekula DB, Rallabandi VPS, Mohammed S, Natarajan S, Park J. Identification of Novel Ribonucleotide Reductase Inhibitors for Therapeutic Application in Bile Tract Cancer: An Advanced Pharmacoinformatics Study. Biomolecules 2022; 12:biom12091279. [PMID: 36139117 PMCID: PMC9496582 DOI: 10.3390/biom12091279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022] Open
Abstract
Biliary tract cancer (BTC) is constituted by a heterogeneous group of malignant tumors that may develop in the biliary tract, and it is the second most common liver cancer. Human ribonucleotide reductase M1 (hRRM1) has already been proven to be a potential BTC target. In the current study, a de novo design approach was used to generate novel and effective chemical therapeutics for BTC. A set of comprehensive pharmacoinformatics approaches was implemented and, finally, seventeen potential molecules were found to be effective for the modulation of hRRM1 activity. Molecular docking, negative image-based ShaEP scoring, absolute binding free energy, in silico pharmacokinetics, and toxicity assessments corroborated the potentiality of the selected molecules. Almost all molecules showed higher affinity in comparison to gemcitabine and naphthyl salicylic acyl hydrazone (NSAH). On binding interaction analysis, a number of critical amino acids was found to hold the molecules at the active site cavity. The molecular dynamics (MD) simulation study also indicated the stability between protein and ligands. High negative MM-GBSA (molecular mechanics generalized Born and surface area) binding free energy indicated the potentiality of the molecules. Therefore, the proposed molecules might have the potential to be effective therapeutics for the management of BTC.
Collapse
Affiliation(s)
- Md Ataul Islam
- 3BIGS Omicscore Private Limited, 909 Lavelle Building, Richmond Circle, Bangalore 560025, India
| | | | - Sridhar Srinivasan
- 3BIGS Omicscore Private Limited, 909 Lavelle Building, Richmond Circle, Bangalore 560025, India
| | - Dawood Babu Dudekula
- 3BIGS Omicscore Private Limited, 909 Lavelle Building, Richmond Circle, Bangalore 560025, India
| | | | - Sameer Mohammed
- 3BIGS Omicscore Private Limited, 909 Lavelle Building, Richmond Circle, Bangalore 560025, India
| | | | - Junhyung Park
- 3BIGS Co., Ltd., B-831, Geumgang Penterium IX Tower, Hwaseong 18469, Korea
- Correspondence:
| |
Collapse
|
6
|
Huff SE, Winter JM, Dealwis CG. Inhibitors of the Cancer Target Ribonucleotide Reductase, Past and Present. Biomolecules 2022; 12:biom12060815. [PMID: 35740940 PMCID: PMC9221315 DOI: 10.3390/biom12060815] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 01/02/2023] Open
Abstract
Ribonucleotide reductase (RR) is an essential multi-subunit enzyme found in all living organisms; it catalyzes the rate-limiting step in dNTP synthesis, namely, the conversion of ribonucleoside diphosphates to deoxyribonucleoside diphosphates. As expression levels of human RR (hRR) are high during cell replication, hRR has long been considered an attractive drug target for a range of proliferative diseases, including cancer. While there are many excellent reviews regarding the structure, function, and clinical importance of hRR, recent years have seen an increase in novel approaches to inhibiting hRR that merit an updated discussion of the existing inhibitors and strategies to target this enzyme. In this review, we discuss the mechanisms and clinical applications of classic nucleoside analog inhibitors of hRRM1 (large catalytic subunit), including gemcitabine and clofarabine, as well as inhibitors of the hRRM2 (free radical housing small subunit), including triapine and hydroxyurea. Additionally, we discuss novel approaches to targeting RR and the discovery of new classes of hRR inhibitors.
Collapse
Affiliation(s)
- Sarah E. Huff
- Department of Pediatrics, University of California, San Diego, CA 92093, USA;
| | - Jordan M. Winter
- Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Akron, OH 44106, USA;
| | - Chris G. Dealwis
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence:
| |
Collapse
|
7
|
Ueno H, Hoshino T, Yano W, Tsukioka S, Suzuki T, Hara S, Ogino Y, Chong KT, Suzuki T, Tsuji S, Itadani H, Yamamiya I, Otsu Y, Ito S, Yonekura T, Terasaka M, Tanaka N, Miyahara S. TAS1553, a small molecule subunit interaction inhibitor of ribonucleotide reductase, exhibits antitumor activity by causing DNA replication stress. Commun Biol 2022; 5:571. [PMID: 35681099 PMCID: PMC9184620 DOI: 10.1038/s42003-022-03516-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/22/2022] [Indexed: 01/03/2023] Open
Abstract
Ribonucleotide reductase (RNR) is composed of two non-identical subunits, R1 and R2, and plays a crucial role in balancing the cellular dNTP pool, establishing it as an attractive cancer target. Herein, we report the discovery of a highly potent and selective small-molecule inhibitor, TAS1553, targeting protein-protein interaction between R1 and R2. TAS1553 is also expected to demonstrate superior selectivity because it does not directly target free radical or a substrate binding site. TAS1553 has shown antiproliferative activity in human cancer cell lines, dramatically reducing the intracellular dATP pool and causing DNA replication stress. Furthermore, we identified SLFN11 as a biomarker that predicts the cytotoxic effect of TAS1553. Oral administration of TAS1553 demonstrated robust antitumor efficacy against both hematological and solid cancer xenograft tumors and also provided a significant survival benefit in an acute myelogenous leukemia model. Our findings strongly support the evaluation of TAS1553 in clinical trials. A small-molecule protein-protein interaction inhibitor of ribonucleotide reductase subunit, TAS1553, is shown to inhibit growth of both hematological and solid cancer xenograft tumors following oral administration in mice.
Collapse
|
8
|
Zhong J, Reinhardt CR, Hammes-Schiffer S. Role of Water in Proton-Coupled Electron Transfer between Tyrosine and Cysteine in Ribonucleotide Reductase. J Am Chem Soc 2022; 144:7208-7214. [PMID: 35426309 PMCID: PMC9197590 DOI: 10.1021/jacs.1c13455] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ribonucleotide reductase (RNR) catalyzes the reduction of ribonucleotides to deoxyribonucleotides and is critical for DNA synthesis and repair in all organisms. Its mechanism requires radical transfer along a ∼32 Å pathway through a series of proton-coupled electron transfer (PCET) steps. Previous simulations suggested that a glutamate residue (E623) mediates the PCET reaction between two stacked tyrosine residues (Y730 and Y731) through a proton relay mechanism. This work focuses on the adjacent PCET reaction between Y730 and a cysteine residue (C439). Quantum mechanical/molecular mechanical free energy simulations illustrate that when Y730 and Y731 are stacked, E623 stabilizes the radical on C439 through hydrogen bonding with the Y730 hydroxyl group. When Y731 is flipped away from Y730, a water molecule stabilizes the radical on C439 through hydrogen bonding with Y730 and lowers the free energy barrier for radical transfer from Y730 to C439 through electrostatic interactions with the transferring hydrogen but does not directly accept the proton. These simulations indicate that the conformational motions and electrostatic interactions of the tyrosines, cysteine, glutamate, and water strongly impact the thermodynamics and kinetics of these two coupled PCET reactions. Such insights are important for protein engineering efforts aimed at altering radical transfer in RNR.
Collapse
Affiliation(s)
- Jiayun Zhong
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Clorice R. Reinhardt
- Department of Molecular Biophysics & Biochemistry, Yale University, 266 Whitney Avenue, New Haven, Connecticut 06520, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
9
|
Salvador PJ, Jacobs HB, Alnouri L, Fee A, Utley LM, Mabry M, Krajeck H, Dicksion C, Awad AM. Synthesis and in silico evaluation of novel uridyl sulfamoylbenzoate derivatives as potential anticancer agents targeting M1 subunit of human ribonucleotide reductase (hRRM1). Med Chem Res 2022. [DOI: 10.1007/s00044-021-02840-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Long MJC, Ly P, Aye Y. Still no Rest for the Reductases: Ribonucleotide Reductase (RNR) Structure and Function: An Update. Subcell Biochem 2022; 99:155-197. [PMID: 36151376 DOI: 10.1007/978-3-031-00793-4_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein we present a multidisciplinary discussion of ribonucleotide reductase (RNR), the essential enzyme uniquely responsible for conversion of ribonucleotides to deoxyribonucleotides. This chapter primarily presents an overview of this multifaceted and complex enzyme, covering RNR's role in enzymology, biochemistry, medicinal chemistry, and cell biology. It further focuses on RNR from mammals, whose interesting and often conflicting roles in health and disease are coming more into focus. We present pitfalls that we think have not always been dealt with by researchers in each area and further seek to unite some of the field-specific observations surrounding this enzyme. Our work is thus not intended to cover any one topic in extreme detail, but rather give what we consider to be the necessary broad grounding to understand this critical enzyme holistically. Although this is an approach we have advocated in many different areas of scientific research, there is arguably no other single enzyme that embodies the need for such broad study than RNR. Thus, we submit that RNR itself is a paradigm of interdisciplinary research that is of interest from the perspective of the generalist and the specialist alike. We hope that the discussions herein will thus be helpful to not only those wanting to tackle RNR-specific problems, but also those working on similar interdisciplinary projects centering around other enzymes.
Collapse
Affiliation(s)
- Marcus J C Long
- University of Lausanne (UNIL), Lausanne, Switzerland
- Department of Biochemistry, UNIL, Epalinges, Switzerland
| | - Phillippe Ly
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- EPFL SB ISIC LEAGO, Lausanne, Switzerland
| | - Yimon Aye
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
- EPFL SB ISIC LEAGO, Lausanne, Switzerland.
| |
Collapse
|
11
|
Kontandreopoulou CN, Diamantopoulos PT, Giannopoulos A, Symeonidis A, Kotsianidis I, Pappa V, Galanopoulos A, Panayiotidis P, Dimou M, Solomou E, Loupis T, Zoi K, Giannakopoulou N, Dryllis G, Hatzidavid S, Viniou NA. Bone marrow ribonucleotide reductase mRNA levels and methylation status as prognostic factors in patients with myelodysplastic syndrome treated with 5-Azacytidine. Leuk Lymphoma 2021; 63:729-737. [PMID: 34738857 DOI: 10.1080/10428194.2021.1998484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ribonucleotide Reductase (RNR) is a two-subunit (RRM1, RRM2) enzyme, responsible for the conversion of ribonucleotides to deoxyribonucleotides required for DNA replication. To evaluate RNR as a biomarker of response to 5-azacytidine, we measured RNR mRNA levels by a quantitative real-time PCR in bone marrow samples of 98 patients with myelodysplastic syndrome (MDS) treated with 5-azacytidine with parallel quantification of the gene promoter's methylation. Patients with low RRM1 levels had a high RRM1 methylation status (p = 0.005) and a better response to treatment with 5-azacytidine (p = 0.019). A next-generation sequencing for genes of interest in MDS was also carried out in a subset of 61 samples. Splicing factor mutations were correlated with lower RRM1 mRNA levels (p = 0.044). Our results suggest that the expression of RNR is correlated with clinical outcomes, thus its expression could be used as a prognostic factor for response to 5-azacytidine and a possible therapeutic target in MDS.
Collapse
Affiliation(s)
- Christina-Nefeli Kontandreopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis T Diamantopoulos
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Giannopoulos
- Haematology Research Lab, Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation, Athens, Greece
| | - Argiris Symeonidis
- Department of Internal Medicine, University Hospital of Patras, Rio, Greece
| | - Ioannis Kotsianidis
- Department of Hematology, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Vasiliki Pappa
- Haematology Division, Second Department of Internal Medicine, Attikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Galanopoulos
- Department of Clinical Hematology, 'G. Gennimatas' District General Hospital, Athens, Greece
| | - Panayiotis Panayiotidis
- First Department of Propedeutic Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Dimou
- First Department of Propedeutic Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elena Solomou
- Department of Internal Medicine, University Hospital of Patras, Rio, Greece
| | - Theodoros Loupis
- Haematology Research Lab, Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation, Athens, Greece
| | - Katerina Zoi
- Haematology Research Lab, Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation, Athens, Greece
| | - Nefeli Giannakopoulou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Dryllis
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Sevastianos Hatzidavid
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Nora-Athina Viniou
- Hematology Unit, First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
12
|
Greene BL, Kang G, Cui C, Bennati M, Nocera DG, Drennan CL, Stubbe J. Ribonucleotide Reductases: Structure, Chemistry, and Metabolism Suggest New Therapeutic Targets. Annu Rev Biochem 2020; 89:45-75. [PMID: 32569524 PMCID: PMC7316142 DOI: 10.1146/annurev-biochem-013118-111843] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ribonucleotide reductases (RNRs) catalyze the de novo conversion of nucleotides to deoxynucleotides in all organisms, controlling their relative ratios and abundance. In doing so, they play an important role in fidelity of DNA replication and repair. RNRs' central role in nucleic acid metabolism has resulted in five therapeutics that inhibit human RNRs. In this review, we discuss the structural, dynamic, and mechanistic aspects of RNR activity and regulation, primarily for the human and Escherichia coli class Ia enzymes. The unusual radical-based organic chemistry of nucleotide reduction, the inorganic chemistry of the essential metallo-cofactor biosynthesis/maintenance, the transport of a radical over a long distance, and the dynamics of subunit interactions all present distinct entry points toward RNR inhibition that are relevant for drug discovery. We describe the current mechanistic understanding of small molecules that target different elements of RNR function, including downstream pathways that lead to cell cytotoxicity. We conclude by summarizing novel and emergent RNR targeting motifs for cancer and antibiotic therapeutics.
Collapse
Affiliation(s)
- Brandon L Greene
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Gyunghoon Kang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
| | - Chang Cui
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Marina Bennati
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- Department of Chemistry, University of Göttingen, 37073 Göttingen, Germany
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Catherine L Drennan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|