1
|
Mohan RD, Kulkarni NV. Recent developments in the design of functional derivatives of edaravone and exploration of their antioxidant activities. Mol Divers 2025; 29:1895-1910. [PMID: 39102113 DOI: 10.1007/s11030-024-10940-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/11/2024] [Indexed: 08/06/2024]
Abstract
Edaravone, a pyrazalone derivative, is an antioxidant and free radical scavenger used to treat oxidative stress-related diseases. It is a proven drug to mitigate conditions prevailing to oxidative stress by inhibiting lipid peroxidation, reducing inflammation, and thereby preventing endothelial cell death. In recent years, considerable interest has been given by researchers in the derivatization of edaravone by adding varieties of substituents of versatile steric and functional properties to improve its antioxidant and pharmacological activity. This review accounts all the important methods developed for the derivatization of edaravone and the impacts of the structural modifications on the antioxidant activity of the motif.
Collapse
Affiliation(s)
- R Divya Mohan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, 690525, India
| | - Naveen V Kulkarni
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, 690525, India.
| |
Collapse
|
2
|
Noori M, Khalili Ghomi M, Dastyafteh N, Oliyaei N, Hamedifar H, Javanshir S, Tanideh N, Sattarinezhad E, Sattari F, Haghani M, Rahmani H, Larijani B, Mahdavi M, Hajimiri MH, Iraji A. Isoindolinedione-Benzamide Pyridinium Derivatives for Targeting Alzheimer's Disease. ACS OMEGA 2024; 9:48032-48043. [PMID: 39676969 PMCID: PMC11635510 DOI: 10.1021/acsomega.4c04027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/26/2024] [Accepted: 11/05/2024] [Indexed: 12/17/2024]
Abstract
An Isoindolinedione-benzamide pyridinium derivatives were designed through a structure-based strategy and synthesized as novel multifunctional anti-Alzheimer agents. The inhibitory activities of all 17 derivatives against acetylcholinesterase and butyrylcholinesterase were evaluated. Results exhibited that compound 7j displayed promising AChE inhibitory activity with an IC50 value of 0.26 ± 0.07 μM, and compound 7c exhibited an IC50 value of 0.08 ± 0.01 μM against BChE with 132-fold better inhibitory activity in comparison with positive control. Next, the enzyme kinetics studies and detailed binding mode via molecular docking were performed for the most potent compounds. Additionally, molecular dynamics simulations were accomplished to further investigate the potent compound's interaction, orientation, and conformation over the related enzymes. The neurotoxicity of the most potent derivative was executed against SH-SY5Y, and the mRNA levels of GSK-3α and GSK-3β after treatment with 7c on SH-SY5Y were evaluated. Results exhibited the mRNA levels of GSK-3β were decreased compared to the control group. All these results indicate that 7c is a good starting point for developing a multifunctional anti-Alzheimer compound.
Collapse
Affiliation(s)
- Milad Noori
- Pharmaceutical
and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Minoo Khalili Ghomi
- Endocrinology
and Metabolism Research Center, Endocrinology
and Metabolism Clinical Sciences Institute, Tehran University of Medical
Sciences, Tehran 1416634793, Iran
| | - Navid Dastyafteh
- Pharmaceutical
and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Najmeh Oliyaei
- Stem
Cells Technology Research Center, Shiraz
University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Haleh Hamedifar
- CinnaGen
Medical Biotechnology Research Center, Alborz
University of Medical Sciences, Karaj 1461965381, Iran
- CinnaGen
Research and Production Co., Alborz 3164819712, Iran
| | - Shahrzad Javanshir
- Pharmaceutical
and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Nader Tanideh
- Stem
Cells Technology Research Center, Shiraz
University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Elahe Sattarinezhad
- Department
of Pharmacology, School of Medicine, Shiraz
University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Fateme Sattari
- Student
Research Committee, Shiraz University of
Medical Sciences, Shiraz 71348-14336, Iran
| | - Masoud Haghani
- Department
of Physiology, The Medical School, Shiraz
University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Hojjat Rahmani
- Department
of Health Management, Policy and Economics, School of Public Health, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Bagher Larijani
- Endocrinology
and Metabolism Research Center, Endocrinology
and Metabolism Clinical Sciences Institute, Tehran University of Medical
Sciences, Tehran 1416634793, Iran
| | - Mohammad Mahdavi
- Endocrinology
and Metabolism Research Center, Endocrinology
and Metabolism Clinical Sciences Institute, Tehran University of Medical
Sciences, Tehran 1416634793, Iran
| | - Mir H. Hajimiri
- CinnaGen
Research and Production Co., Alborz 3164819712, Iran
- CinnaGen
Medical Biotechnology Research Center, Alborz
University of Medical Sciences, Karaj 1461965381, Iran
| | - Aida Iraji
- Research
Center for Traditional Medicine and History of Medicine, Department
of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
| |
Collapse
|
3
|
Zondagh LS, Malan SF, Joubert J. Edaravone N-benzyl pyridinium derivatives: BACE-1 inhibition, kinetics and in silico binding pose determination. Eur J Pharm Sci 2024; 201:106869. [PMID: 39102997 DOI: 10.1016/j.ejps.2024.106869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/08/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
BACE-1 plays a pivotal role in the production of β-amyloid (Aβ) peptides, implicated in Alzheimer's Disease (AD) pathology. We previously described edaravone N-benzyl pyridinium derivatives (EBPDs) that exhibited multifunctional activity against multiple AD targets. In this study we explored the EBPDs BACE-1 inhibitory activity to potentially enhance the compounds therapeutic profile. The EBPDs exhibited moderate BACE-1 inhibitory activity (IC50 = 44.10 µM - 123.70 µM) and obtained IC50 values between 2.0 and 5.8-fold greater than resveratrol, a known BACE-1 inhibitor (IC50 = 253.20 µM), in this assay. Compound 3 was the most potent inhibitor with an IC50 of 44.10 µM and a Ki of 19.96 µM and a mixed-type mode of inhibition that favored binding in a competitive manner. Molecular docking identified crucial interactions with BACE-1 active site residues, supported by 100 ns MD simulations. The study highlighted the EBPDs therapeutic potential as BACE-1 inhibitors and multifunctional anti-AD therapeutic agents.
Collapse
Affiliation(s)
- L S Zondagh
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Cape Town, Western Cape 7535, South Africa
| | - S F Malan
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Cape Town, Western Cape 7535, South Africa
| | - J Joubert
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Cape Town, Western Cape 7535, South Africa.
| |
Collapse
|
4
|
Divya Mohan R, Anaswara SA, Kulkarni NV, Bojilov DG, Manolov SP, Ivanov II, Al-Otaibi JS, Sheena Mary Y. Synthesis, Characterization and Assessment of Antioxidant and Melanogenic Inhibitory Properties of Edaravone Derivatives. Antioxidants (Basel) 2024; 13:1148. [PMID: 39334807 PMCID: PMC11429142 DOI: 10.3390/antiox13091148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
A series of edaravone derivatives and the corresponding Cu(II) complexes were synthesized and characterized using spectroscopic and analytical techniques such as IR, UV, NMR and elemental analysis. Antioxidant activities of all compounds were examined using free radical scavenging methods such as hydrogen peroxide scavenging activity (HPSA), 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2-2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) assays. All of the tested compounds exhibited good antioxidant activity. Further, the frontier orbital energy levels, as well as various chemical properties, were determined using the density functional theory (DFT) calculations. The MEP maps of all of the derivatives were plotted to identify the nucleophilic and electrophilic reactive sites. Further, binding energies of all of the organic compounds with the protein tyrosinase was investigated to determine their potential anti-melanogenic applications. The selected ligand, L6 was subjected to molecular dynamics simulation analysis to determine the stability of the ligand-protein complex. The MD simulation was performed (150 ns) to estimate the stability of the tyrosinase-L6 complex. Other key parameters, such as, RMSD, RMSF, Rg, hydrogen bonds, SASA and MMPBSA were also analyzed to understand the interaction of L6 with the tyrosinase protein.
Collapse
Affiliation(s)
- R Divya Mohan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - S A Anaswara
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Naveen V Kulkarni
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Dimitar G Bojilov
- Department of Organic Chemistry, University of Plovdiv, 24 Tzar Assen str., 4000 Plovdiv, Bulgaria
| | - Stanimir P Manolov
- Department of Organic Chemistry, University of Plovdiv, 24 Tzar Assen str., 4000 Plovdiv, Bulgaria
| | - Iliyan I Ivanov
- Department of Organic Chemistry, University of Plovdiv, 24 Tzar Assen str., 4000 Plovdiv, Bulgaria
| | - Jamelah S Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Y Sheena Mary
- Department of Physics, FMNC, University of Kerala, Kollam 691001, India
| |
Collapse
|
5
|
Branković J, Milovanović VM, Petrović ZD, Simijonović D, Petrović VP. Pyrazolone-type compounds (part II): in vitro and in silico evaluation of antioxidant potential; structure-activity relationship. RSC Adv 2023; 13:2884-2895. [PMID: 36756409 PMCID: PMC9846718 DOI: 10.1039/d2ra08280b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
The pyrazolone class comprises a variety of hybrid compounds displaying diverse biological actions. Although studied for decades, these compounds are still of interest due to their facile chemical transformations. In our previous work, we presented the synthetic route of functionalised pyrazolone derivatives. The presence of pyrazolone structural motif in many drugs, such as edaravone, prompted us to investigate the antioxidant features of the selected compounds. In this paper, we provide an extensive in vitro and in silico description of the antioxidant properties of selected pyrazolone analogues. The obtained in vitro results revealed their great antiradical potency against the DPPH radical (IC50 values in the 2.6-7.8 μM range), where the best results were obtained for analogues bearing a catechol moiety. Density functional theory (DFT) was used to assess their antioxidant capacity from the thermodynamic aspect. Here, good agreement with in vitro results was achieved. DFT was employed for the prediction of the most preferable radical scavenging pathway, also. In polar solvents, the SPLET mechanism is a favourable scavenging route, whereas in nonpolar solvents the HAT is slightly predominant. Furthermore, antioxidant mechanisms were studied in the presence of relevant reactive oxygen species. The obtained values of the reaction enthalpies with the selected radicals revealed that HAT is slightly prevailing in polar solvents, while the SPLET mechanism is dominant in nonpolar solvents. Regarding the well-known antioxidant features of the drug edaravone, these findings represent valuable data for this pyrazolone class and could be used as the basis for further investigations.
Collapse
Affiliation(s)
- Jovica Branković
- University of Kragujevac, Faculty of Science, Department of Chemistry R. Domanovića 12 34000 Kragujevac Serbia
| | - Vesna M Milovanović
- University of Kragujevac, Faculty of Agronomy, Department of Chemistry and Chemical Engineering Cara Dušana 34 32000 Čačak Serbia
| | - Zorica D Petrović
- University of Kragujevac, Faculty of Science, Department of Chemistry R. Domanovića 12 34000 Kragujevac Serbia
| | - Dušica Simijonović
- University of Kragujevac, Institute for Information Technologies, Department of Science Jovana Cvijića bb 34000 Kragujevac Serbia
| | - Vladimir P Petrović
- University of Kragujevac, Faculty of Science, Department of Chemistry R. Domanovića 12 34000 Kragujevac Serbia
| |
Collapse
|
6
|
Ahsan MJ, Ali A, Ali A, Thiriveedhi A, Bakht MA, Yusuf M, Salahuddin, Afzal O, Altamimi AS. Pyrazoline Containing Compounds as Therapeutic Targets for Neurodegenerative Disorders. ACS OMEGA 2022; 7:38207-38245. [PMID: 36340076 PMCID: PMC9631758 DOI: 10.1021/acsomega.2c05339] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/03/2022] [Indexed: 09/21/2023]
Abstract
Pyrazolines are a significant class of heterocyclic compounds with essential biological activities. They are quite stable, which has inspired medicinal chemists to experiment with the ring's structure in many different ways to create a variety of pharmacological activities. The structures of numerous commercially available therapeutic agents contain a pyrazoline ring. Pyrazolines are well-known for their ability to treat neurodegenerative diseases. The neurodegenerative diseases that affect huge populations globally include Alzheimer's disease (AD), Parkinson's disease (PD), and psychiatric disorders. The neuroprotective properties of pyrazolines published since 2003 are covered in the current review. Structure-activity relationships (SARs), molecular docking simulation, anticholinesterase (anti-AChE), and monoamine oxidase (MAO A/B) inhibitory actions are all covered in this article. Pyrazolines were discovered to have beneficial effects in the management of AD and were revealed to be inhibitors of acetylcholine esterase (AChE) and beta-amyloid (Aβ) plaques. They were discovered to be efficient against PD and also targeted MAO B and COMT. It was discovered that the pyrazolines block MAO A to treat psychiatric diseases. Pyrazolines are significant heteroaromatic scaffolds with a variety of biological functions. They were discovered to be remarkably stable and serve as an indispensable anchor for the development of new drugs. By blocking AChE and MAOs, they may be used to treat neurodegenerative diseases. The discussion outlined here is an essential and helpful resource for medicinal chemists who are investigating and applying pyrazolines in neurodegenerative research initiatives as well as to expedite future research programs on neurodegenerative disorders.
Collapse
Affiliation(s)
- Mohamed Jawed Ahsan
- Department
of Pharmaceutical Chemistry, Maharishi Arvind
College of Pharmacy, Jaipur, Rajasthan 302 039, India
| | - Amena Ali
- Department
of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abuzer Ali
- Department
of Pharmacognosy, College of Pharmacy, Taif
University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Arunkumar Thiriveedhi
- Vignan’s
Foundation for Science, Technology & Research Deemed to be University
Guntur, Vadlamudi, Andhra Pradesh 522213, India
| | - Mohammed A. Bakht
- Department
of Chemistry, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, P.O. Box 83, Al-Kharj 11942, Saudi Arabia
| | - Mohammad Yusuf
- Department
of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Salahuddin
- Department
of Pharmaceutical Chemistry, Noida Institute
of Technology (Pharmacy Institute), Knowledge Park-2, Greater Noida, Uttar
Pradesh 201 306, India
| | - Obaid Afzal
- Department
of Pharmaceutical Chemistry, College of
Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box- 173, Al-Kharj 11942, Saudi Arabia
| | - Abdulmalik Saleh
Alfawaz Altamimi
- Department
of Pharmaceutical Chemistry, College of
Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box- 173, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
7
|
Mustafa G, Zia-ur-Rehman M, Sumrra SH, Ashfaq M, Zafar W, Ashfaq M. A critical review on recent trends on pharmacological applications of pyrazolone endowed derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Discovery of Guanidine Derivatives from Buthus martensii Karsch with Metal-Binding and Cholinesterase Inhibition Properties. Molecules 2021; 26:molecules26216737. [PMID: 34771145 PMCID: PMC8588048 DOI: 10.3390/molecules26216737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Two rare guanidine-type alkaloids, Buthutin A (1) and Buthutin B (2), along with two other compounds (3, 4), were isolated from Buthus martensii Karsch, and determined using extensive spectroscopic data analysis and high resolution-mass spectrometry. Compound 1 showed the most potent inhibition on AChE and BChE with IC50 values of 7.83 ± 0.06 and 47.44 ± 0.95 μM, respectively. Kinetic characterization of compound 1 confirmed a mixed-type of AChE inhibition mechanism in accordance with the docking results, which shows its interaction with both catalytic active (CAS) and peripheral anionic (PAS) sites. The specific binding of compound 1 to PAS domain of AChE was also confirmed experimentally. Moreover, compounds 1 and 3 exhibited satisfactory biometal binding abilities toward Cu2+, Fe2+, Zn2+ and Al3+ ions. These results provide a new evidence for further development and utilization of B. martensii in health and pharmaceutical products.
Collapse
|
9
|
Koszła O, Stępnicki P, Zięba A, Grudzińska A, Matosiuk D, Kaczor AA. Current Approaches and Tools Used in Drug Development against Parkinson's Disease. Biomolecules 2021; 11:897. [PMID: 34208760 PMCID: PMC8235487 DOI: 10.3390/biom11060897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disorder characterized by the death of nerve cells in the substantia nigra of the brain. The treatment options for this disease are very limited as currently the treatment is mainly symptomatic, and the available drugs are not able to completely stop the progression of the disease but only to slow it down. There is still a need to search for new compounds with the most optimal pharmacological profile that would stop the rapidly progressing disease. An increasing understanding of Parkinson's pathogenesis and the discovery of new molecular targets pave the way to develop new therapeutic agents. The use and selection of appropriate cell and animal models that better reflect pathogenic changes in the brain is a key aspect of the research. In addition, computer-assisted drug design methods are a promising approach to developing effective compounds with potential therapeutic effects. In light of the above, in this review, we present current approaches for developing new drugs for Parkinson's disease.
Collapse
Affiliation(s)
- Oliwia Koszła
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (O.K.); (P.S.); (A.Z.); (A.G.); (D.M.)
| | - Piotr Stępnicki
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (O.K.); (P.S.); (A.Z.); (A.G.); (D.M.)
| | - Agata Zięba
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (O.K.); (P.S.); (A.Z.); (A.G.); (D.M.)
| | - Angelika Grudzińska
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (O.K.); (P.S.); (A.Z.); (A.G.); (D.M.)
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (O.K.); (P.S.); (A.Z.); (A.G.); (D.M.)
| | - Agnieszka A. Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., 20-093 Lublin, Poland; (O.K.); (P.S.); (A.Z.); (A.G.); (D.M.)
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
10
|
Barajas-Carrillo VW, Estolano-Cobián A, Díaz-Rubio L, Ayllón-Gutiérrez RR, Salazar-Aranda R, Díaz-Molina R, García-González V, Almanza-Reyes H, Rivero IA, Marrero JG, Córdova-Guerrero I. Antioxidant and acetylcholinesterase inhibition activity of aliphatic and aromatic edaravone derivatives. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02667-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|