1
|
Liu YL, Zhang Q, Li BQ, Zhang D, Chui RH, Zhang LL, Zhang Q, Ma LY. Progress in the study of anti-Alzheimer's disease activity of pyrimidine-containing bioactive molecules. Eur J Med Chem 2025; 285:117199. [PMID: 39799720 DOI: 10.1016/j.ejmech.2024.117199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/29/2024] [Accepted: 12/19/2024] [Indexed: 01/15/2025]
Abstract
Pyrimidines are aromatic, heterocyclic organic compounds characterized by a six-membered ring that contains four carbon atoms and two nitrogen atoms. They have been reported to exhibit a variety of biological activities such as antifungal, antiviral, and anti-Parkinsonian effects. Recently, there has been an increased focus on their potential anti-Alzheimer's properties. Several pyrimidine-based drugs and their analogs are currently undergoing various phases of clinical trials, indicating pyrimidine as a promising chemical structure for drug development. Notably, modifications to the pyrimidine structure significantly influence their activity against Alzheimer's disease. For instance, the introduction of heteroatoms into the pyrimidine ring or alternations in the length of the linkage region have been shown to enhance therapeutic efficacy. This review provides a comprehensive overview of pyrimidine derivatives as potential therapeutics for Alzheimer's disease, with a focus on structure-activity relationship (SAR) studies, design strategies, and binding mechanisms. These insights could pave the way for the development of more effective anti-Alzheimer's medications.
Collapse
Affiliation(s)
- Yu-Lin Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Qian Zhang
- Jining First People's Hospital, Jining, 272000, PR China
| | - Bing-Qian Li
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Di Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Rui-Hao Chui
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Lin-Lin Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Qi Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan, 450002, PR China.
| | - Li-Ying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; China Meheco Topfond Pharmaceutical Co., Key Laboratory of Cardio-cerebrovascular Drug, Zhumadian, 463000, PR China.
| |
Collapse
|
2
|
Nakatsuka N, Adler D, Jiang L, Hartman A, Cheng E, Klann E, Satija R. A Reproducibility Focused Meta-Analysis Method for Single-Cell Transcriptomic Case-Control Studies Uncovers Robust Differentially Expressed Genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.15.618577. [PMID: 39463993 PMCID: PMC11507907 DOI: 10.1101/2024.10.15.618577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
We assessed the reproducibility of differentially expressed genes (DEGs) in previously published Alzheimer's (AD), Parkinson's (PD), Schizophrenia (SCZ), and COVID-19 scRNA-seq studies. While transcriptional scores from DEGs of individual PD and COVID-19 datasets had moderate predictive power for case-control status of other datasets (AUC=0.77 and 0.75), genes from individual AD and SCZ datasets had poor predictive power (AUC=0.68 and 0.55). We developed a non-parametric meta-analysis method, SumRank, based on reproducibility of relative differential expression ranks across datasets, and found DEGs with improved predictive power (AUC=0.88, 0.91, 0.78, and 0.62). By multiple other metrics, specificity and sensitivity of these genes were substantially higher than those discovered by dataset merging and inverse variance weighted p-value aggregation methods. The DEGs revealed known and novel biological pathways, and we validate BCAT1 as down-regulated in AD mouse oligodendrocytes. Lastly, we evaluate factors influencing reproducibility of individual studies as a prospective guide for experimental design.
Collapse
|
3
|
Li S, Xiao J, Huang C, Sun J. Identification and validation of oxidative stress and immune-related hub genes in Alzheimer's disease through bioinformatics analysis. Sci Rep 2023; 13:657. [PMID: 36635346 PMCID: PMC9837191 DOI: 10.1038/s41598-023-27977-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in aged population. Oxidative stress and neuroinflammation play important roles in the pathogenesis of AD. Investigation of hub genes for the development of potential therapeutic targets and candidate biomarkers is warranted. The differentially expressed genes (DEGs) in AD were screened in GSE48350 dataset. The differentially expressed oxidative stress genes (DEOSGs) were analyzed by intersection of DEGs and oxidative stress-related genes. The immune-related DEOSGs and hub genes were identified by weighted gene co-expression network analysis (WGCNA) and protein-protein interaction (PPI) analysis, respectively. Enrichment analysis was performed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. The diagnostic value of hub genes was assessed by receiver operating characteristic analysis and validated in GSE1297. The mRNA expression of diagnostic genes was determined by qRT-PCR analysis. Finally, we constructed the drug, transcription factors (TFs), and microRNA network of the diagnostic genes. A total of 1160 DEGs (259 up-regulated and 901 down-regulated) were screened in GSE48350. Among them 111 DEOSGs were identified in AD. Thereafter, we identified significant difference of infiltrated immune cells (effector memory CD8 T cell, activated B cell, memory B cell, natural killer cell, CD56 bright natural killer cell, natural killer T cell, plasmacytoid dendritic cell, and neutrophil) between AD and control samples. 27 gene modules were obtained through WGCNA and turquoise module was the most relevant module. We obtained 66 immune-related DEOSGs by intersecting turquoise module with the DEOSGs and identified 15 hub genes through PPI analysis. Among them, 9 hub genes (CCK, CNR1, GAD1, GAP43, NEFL, NPY, PENK, SST, and TAC1) were identified with good diagnostic values and verified in GSE1297. qRT-PCR analysis revealed the downregulation of SST, NPY, GAP43, CCK, and PENK and upregulation of NEFL in AD. Finally, we identified 76 therapeutic agents, 152 miRNAs targets, and 91 TFs regulatory networks. Our study identified 9 key genes associated with oxidative stress and immune reaction in AD pathogenesis. The findings may help to provide promising candidate biomarkers and therapeutic targets for AD.
Collapse
Affiliation(s)
- Shengjie Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250000, China. .,Department of Neurosurgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330000, China. .,Nanchang University, Nanchang, 330000, China.
| | - Jinting Xiao
- grid.452422.70000 0004 0604 7301Department of Medical Ultrasound, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250000 China
| | - Chuanjiang Huang
- grid.452422.70000 0004 0604 7301Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250000 China ,grid.415002.20000 0004 1757 8108Department of Neurosurgery, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330000 China ,grid.260463.50000 0001 2182 8825Nanchang University, Nanchang, 330000 China
| | - Jikui Sun
- grid.452422.70000 0004 0604 7301Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250000 China
| |
Collapse
|
4
|
Podsiedlik M, Markowicz-Piasecka M, Sikora J. The Influence of Selected Antipsychotic Drugs on Biochemical Aspects of Alzheimer's Disease. Int J Mol Sci 2022; 23:4621. [PMID: 35563011 PMCID: PMC9102502 DOI: 10.3390/ijms23094621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
The aim of this study was to assess the potency of selected antipsychotic drugs (haloperidol (HAL), bromperidol (BRMP), benperidol (BNP), penfluridol (PNF), pimozide (PIM), quetiapine (QUET) and promazine (PROM)) on the main pathological hallmarks of Alzheimer's disease (AD). Binary mixtures of donepezil and antipsychotics produce an anti-BuChE effect, which was greater than either compound alone. The combination of rivastigmine and antipsychotic drugs (apart from PNF) enhanced AChE inhibition. The tested antipsychotics (excluding HAL and PNF) significantly reduce the early stage of Aβ aggregation. BRMP, PIM, QUET and PROM were found to substantially inhibit Aβ aggregation after a longer incubation time. A test of human erythrocytes hemolysis showed that short-term incubation of red blood cells (RBCs) with QUET resulted in decreased hemolysis. The antioxidative properties of antipsychotics were also proved in human umbilical vein endothelial cells (HUVEC); all tested drugs were found to significantly increase cell viability. In the case of astrocytes, BNP, PNF, PIM and PROM showed antioxidant potential.
Collapse
Affiliation(s)
- Maria Podsiedlik
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Magdalena Markowicz-Piasecka
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Joanna Sikora
- Department of Bioinorganic Chemistry, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| |
Collapse
|
5
|
Al-Nema M, Gaurav A, Lee VS, Gunasekaran B, Lee MT, Okechukwu P, Nimmanpipug P. Structure-based discovery and bio-evaluation of a cyclopenta[4,5]thieno[2,3- d]pyrimidin-4-one as a phosphodiesterase 10A inhibitor. RSC Adv 2022; 12:1576-1591. [PMID: 35425186 PMCID: PMC8979230 DOI: 10.1039/d1ra07649c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
Phosphodiesterase10A (PDE10A) is a potential therapeutic target for the treatment of several neurodegenerative disorders. Thus, extensive efforts of medicinal chemists have been directed toward developing potent PDE10A inhibitors with minimal side effects. However, PDE10A inhibitors are not approved as a treatment for neurodegenerative disorders, possibly due to the lack of research in this area. Therefore, the discovery of novel and diverse scaffolds targeting PDE10A is required. In this study, we described the identification of a new PDE10A inhibitor by structure-based virtual screening combining pharmacophore modelling, molecular docking, molecular dynamics simulations, and biological evaluation. Zinc42657360 with a cyclopenta[4,5]thieno[2,3-d]pyrimidin-4-one scaffold from the zinc database exhibited a significant inhibitory activity of 1.60 μM against PDE10A. The modelling studies demonstrated that Zinc42657360 is involved in three hydrogen bonds with ASN226, THR187 and ASP228, and two aromatic interactions with TYR78 and PHE283, besides the common interactions with the P-clamp residues PHE283 and ILE246. The novel scaffold of Zinc42657360 can be used for the rational design of PDE10A inhibitors with improved affinity. Phosphodiesterase10A (PDE10A) is a potential therapeutic target for the treatment of several neurodegenerative disorders.![]()
Collapse
Affiliation(s)
- Mayasah Al-Nema
- Faculty of Pharmaceutical Sciences, UCSI University Kuala Lumpur 56000 Malaysia
| | - Anand Gaurav
- Faculty of Pharmaceutical Sciences, UCSI University Kuala Lumpur 56000 Malaysia
| | - Vannajan Sanghiran Lee
- Department of Chemistry, Faculty of Science, University of Malaya Kuala Lumpur 50603 Malaysia
| | | | - Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University Kuala Lumpur 56000 Malaysia .,Office of Postgraduate Studies, UCSI University Kuala Lumpur 56000 Malaysia.,Graduate Institute of Pharmacology, College of Medicine, National Taiwan University 10051 Taipei Taiwan
| | - Patrick Okechukwu
- Faculty of Applied Sciences, UCSI University Kuala Lumpur 56000 Malaysia
| | - Piyarat Nimmanpipug
- Department of Chemistry, Faculty of Science, Chiang Mai University Chiang Mai 50200 Thailand.,Center of Excellence for Innovation in Analytical Science and Technology for Biodiversity-based Economic and Society (I-ANALY-S-T_B.BES-CMU), Chiang Mai University 50200 Thailand
| |
Collapse
|