1
|
Yevale D, Teraiya N, Lalwani T, Dalasaniya M, Patel SK, Dixit N, Sangani CB, Kumar S, Mulukuri NVLS, Huang T, Duan YT, Zhang J. Discovery of new pyrazole-4-carboxamide analogues as potential anticancer agents targeting dual aurora kinase A and B. Eur J Med Chem 2024; 280:116917. [PMID: 39388904 DOI: 10.1016/j.ejmech.2024.116917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024]
Abstract
Aurora kinases A and B are critical regulators of cell division and cytokinesis. Abnormal expression of Aurora kinases A and B causes chromosomal instability and disrupts several tumor suppressor and oncoprotein-controlled pathways. As a result, there has been a spike in interest in developing inhibitors against these kinases as anticancer treatments. This paper addresses the discovery, anticancer evaluation and druggability study of new pyrazole-4-carboxamide analogues as kinases inhibitors. Among the compounds, 6k demonstrated the highest cytotoxicity against HeLa and HepG2 cells, with IC50 of 0.43 μM and 0.67 μM, respectively. It selectively inhibited Aurora kinases A and B, with IC50 values of 16.3 nM and 20.2 nM, respectively, in comparison to other kinases. Molecular investigations revealed that 6k induced the inhibition of phosphorylated Thr288 (Aurora kinase A) and phosphorylated Histone H3 (Aurora kinase B), confirming its mechanism of action. Beside, compound 6k arrested the cell cycle at the G2/M phase by modulating cyclinB1 and cdc2 protein levels and increasing the Sub-G1 cell population. It also significantly increased polyploidization (>8 N) and abnormal mitosis, likely due to Aurora kinase inhibition. Furthermore, 6k boosted apoptosis through the intrinsic route, with elevated levels of p53, Bak, Bax, cleaved caspase-3, and cleaved PARP. Moreover, docking and MD simulations validated kinase inhibition-induced anticancer effects. Additionally, 6k satisfied drug-likeness parameters and remained stable in the in vitro metabolism. These findings indicate that 6k warrants further in vivo pharmacokinetic and pharmacodynamics investigations.
Collapse
Affiliation(s)
- Digambar Yevale
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China; Department of Chemistry, Shri M.M Patel Institute of Sciences and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar, Gujarat, 382016, India
| | - Nishith Teraiya
- Department of Pharmaceutical Chemistry, K B Institute of Pharmaceutical Education and Research, Kadi Sarva Vishvavidhyalay, Gandhinagar, Gujarat, 382023, India
| | - Twinkle Lalwani
- Piramal Pharma Limited, Plot No. 18, Pharmaceutical Special Economic Zone, Village-Matoda, Taluka- Sanand, Ahmedabad, Gujarat, 382213, India
| | - Mayur Dalasaniya
- Piramal Pharma Limited, Plot No. 18, Pharmaceutical Special Economic Zone, Village-Matoda, Taluka- Sanand, Ahmedabad, Gujarat, 382213, India
| | - Saumya K Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Science, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Nandan Dixit
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Science, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Chetan B Sangani
- Department of Chemistry, Government Science College, Sector-15, Gandhinagar, Gujarat University, Gujarat, 382016, India.
| | - Sujeet Kumar
- Department of Pharmaceutical Chemistry and Pharmacognosy, Nitte College of Pharmaceutical Sciences, Bangalore, Karnataka, 560064, India
| | - N V L Sirisha Mulukuri
- Department of Pharmaceutical Chemistry and Pharmacognosy, Nitte College of Pharmaceutical Sciences, Bangalore, Karnataka, 560064, India
| | - Tao Huang
- Medical School, Huanghe Science and Technology University, Zhengzhou, China
| | - Yong-Tao Duan
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China.
| | - Jie Zhang
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China.
| |
Collapse
|
2
|
Guan Q, Gao Z, Chen Y, Guo C, Chen Y, Sun H. Structural modification strategies of triazoles in anticancer drug development. Eur J Med Chem 2024; 275:116578. [PMID: 38889607 DOI: 10.1016/j.ejmech.2024.116578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
The triazole functional group plays a pivotal role in the composition of biomolecules with potent anticancer activities, including numerous clinically approved drugs. The strategic utilization of the triazole fragment in the rational modification of lead compounds has demonstrated its ability to improve anticancer activities, enhance selectivity, optimize pharmacokinetic properties, and overcome resistance. There has been significant interest in triazole-containing hybrids in recent years due to their remarkable anticancer potential. However, previous reviews on triazoles in cancer treatment have failed to provide tailored design strategies specific to these compounds. Herein, we present an overview of design strategies encompassing a structure-modification approach for incorporating triazoles into hybrid molecules. This review offers valuable references and briefly introduces the synthesis of triazole derivatives, thereby paving the way for further research and advancements in the field of effective and targeted anticancer therapies.
Collapse
Affiliation(s)
- Qianwen Guan
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Ziming Gao
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yuting Chen
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Can Guo
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
3
|
Han Y, Dong C, Hu M, Wang X, Wang G. Unlocking the adenosine receptor mechanism of the tumour immune microenvironment. Front Immunol 2024; 15:1434118. [PMID: 38994361 PMCID: PMC11236561 DOI: 10.3389/fimmu.2024.1434118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
The suppressive tumour microenvironment significantly hinders the efficacy of immunotherapy in treating solid tumors. In this context, stromal cells, such as tumour-associated fibroblasts, undergo changes that include an increase in the number and function of immunosuppressive cells. Adenosine, a factor that promotes tumour growth, is produced from ATP breakdown and is markedly elevated in the tumour microenvironment. It acts through specific binding to adenosine receptors, with A2A and A2B adenosine receptor being primary drivers of immunosuppression. This paper presents the roles of various adenosine receptors in different tumour microenvironments. This review focus on the function of adenosine receptors in the stromal cells and non-cellular components of the tumour microenvironment. Additionally, we summarize and discuss recent advances and potential trends in using adenosine receptor antagonists combined with immunotherapy.
Collapse
Affiliation(s)
- Yecheng Han
- General Affairs Office of Shenyang Hongqiao Hospital of Traditional Chinese Medicine, Shenyang, China
| | - Chenshuang Dong
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Mingwang Hu
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Xinmiao Wang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Guiling Wang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
4
|
Yevale D, Teraiya N, Lalwani T, Dalasaniya M, Kapadiya K, Ameta RK, Sangani CB, Duan YT. PI3Kδ and mTOR dual inhibitors: Design, synthesis and anticancer evaluation of 3-substituted aminomethylquinoline analogues. Bioorg Chem 2024; 147:107323. [PMID: 38583254 DOI: 10.1016/j.bioorg.2024.107323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
Phosphatidylinositide-3-kinase (PI3K) and the mammalian target of rapamycin (mTOR) have recently been identified as potential cancer targets. In our work, a new family of quinoline analogues was designed, developed, and evaluated as dual inhibitors of PI3Kδ/mTOR. The preliminary biological activity analysis led to the discovery of the lead compounds 5h and 5e. Compounds 5h and 5e exhibited excellent anti-tumor potency with IC50 of 0.26 µM and 0.34 µM against Ramos cells, respectively. Importantly, based on the enzymatic activity assay results, compounds 5h and 5e were identified as dual inhibitors of PI3Kδ and mTOR, with IC50 values of 0.042 µM and 0.056 µM for PI3Kδ and 0.059 µM and 0.073 µM for mTOR, respectively. Furthermore, these compounds showed superior selectivity for blocking PI3Kδ compared to other PI3K isoforms (α, β, and γ), supporting the concept of developing inhibitors that specifically target PI3Kδ/mTOR. The most effective compound 5h was chosen for additional biological testing. At a low dose of 0.5 µM, a western blot investigation confirmed the anticancer effects by inhibiting the PAM cascade, which in turn reduced downstream biomarkers pAkt (Ser473), pAkt (Thr308), and pRPS6 (Ser235/236). Furthermore, it increased apoptosis at the early (10.03 times) and late (17.95 times) stages in the Annexin-V assay as compared to the standard. In addition, the expression of p53, caspase-3, caspase-9, and the Bax/BCl-2 ratio were all significantly increased by compound 5h in the ELISA assay. Based on these results, it appears that 5h may activate the intrinsic apoptosis pathway, which in turn triggers cell death. Furthermore, the anticancer effects could be attributed to the inhibition of PI3Kδ/mTOR, as shown by docking interactions. Lastly, it demonstrated improved in vitro metabolic stability and passed the in silico ADMET/drug-likeness test. This profile recommends 5h for future in vivo PK-PD and efficacy investigations in animal cancer models.
Collapse
Affiliation(s)
- Digambar Yevale
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China; Department of Chemistry, Shri M.M Patel Institute of Sciences and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382016, Gujarat, India
| | - Nishith Teraiya
- Department of Pharmaceutical Chemistry, K B Institute of Pharmaceutical Education and Research, Kadi Sarva Vishvavidhyalay, Gandhinagar, Gujarat 382023, India
| | - Twinkle Lalwani
- Piramal Pharma Limited, Plot No. 18, Pharmaceutical Special Economic Zone, Village-Matoda, Taluka- Sanand, Ahmedabad 382213, Gujarat, India
| | - Mayur Dalasaniya
- Piramal Pharma Limited, Plot No. 18, Pharmaceutical Special Economic Zone, Village-Matoda, Taluka- Sanand, Ahmedabad 382213, Gujarat, India
| | - Khushal Kapadiya
- BRCC Laboratory, Department of Chemistry, School of Science, RK University, Rajkot 360 020, Gujarat, India
| | - Rakesh Kumar Ameta
- Department of Chemistry, Shri M.M Patel Institute of Sciences and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382016, Gujarat, India
| | - Chetan B Sangani
- Department of Chemistry, Shri M.M Patel Institute of Sciences and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382016, Gujarat, India; Department of Chemistry, Government Science College Sector-15, Gandhinagar-382016, Gujarat University, Gujarat, India.
| | - Yong-Tao Duan
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China.
| |
Collapse
|
5
|
Wu Y, Yang Z, Cheng K, Bi H, Chen J. Small molecule-based immunomodulators for cancer therapy. Acta Pharm Sin B 2022; 12:4287-4308. [PMID: 36562003 PMCID: PMC9764074 DOI: 10.1016/j.apsb.2022.11.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy has led to a paradigm shift in the treatment of cancer. Current cancer immunotherapies are mostly antibody-based, thus possessing advantages in regard to pharmacodynamics (e.g., specificity and efficacy). However, they have limitations in terms of pharmacokinetics including long half-lives, poor tissue/tumor penetration, and little/no oral bioavailability. In addition, therapeutic antibodies are immunogenic, thus may cause unwanted adverse effects. Therefore, researchers have shifted their efforts towards the development of small molecule-based cancer immunotherapy, as small molecules may overcome the above disadvantages associated with antibodies. Further, small molecule-based immunomodulators and therapeutic antibodies are complementary modalities for cancer treatment, and may be combined to elicit synergistic effects. Recent years have witnessed the rapid development of small molecule-based cancer immunotherapy. In this review, we describe the current progress in small molecule-based immunomodulators (inhibitors/agonists/degraders) for cancer therapy, including those targeting PD-1/PD-L1, chemokine receptors, stimulator of interferon genes (STING), Toll-like receptor (TLR), etc. The tumorigenesis mechanism of various targets and their respective modulators that have entered clinical trials are also summarized.
Collapse
Affiliation(s)
| | | | - Kui Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huichang Bi
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|