1
|
Supuran CT. Multi- and polypharmacology of carbonic anhydrase inhibitors. Pharmacol Rev 2025; 77:100004. [PMID: 39952696 DOI: 10.1124/pharmrev.124.001125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/24/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
Eight genetically distinct families of the enzyme carbonic anhydrase (CA, EC 4.2.1.1) have been described in organisms overall in the phylogenetic tree. They catalyze the hydration of CO2 to bicarbonate and protons and are involved in pH regulation, chemosensing, and metabolism. The 15 α-CA isoforms present in humans are pharmacological drug targets known for decades, their inhibitors being used as diuretics, antiglaucoma, antiepileptic, or antiobesity drugs, as well as for the management of acute mountain sickness, idiopathic intracranial hypertension, and recently, as antitumor theragnostic agents. Other potential applications include the use of CA inhibitors (CAIs) in inflammatory conditions, cerebral ischemia, neuropathic pain, or Alzheimer/Parkinson disease management. CAs from pathogenic bacteria, fungi, protozoans, and nematodes have started to be considered as drug targets in recent years, with notable advances being registered. CAIs have a complex multipharmacology probably unique to this enzyme, which has been exploited intensely but may lead to other relevant applications in the future due to the emergence of drug design approaches that afforded highly isoform-selective compounds for most α-CAs known to date. They belong to a multitude of chemical classes (sulfonamides and isosteres, [iso]coumarins and related compounds, mono- and dithiocarbamates, selenols, ninhydrines, boronic acids, benzoxaboroles, etc). The polypharmacology of CAIs will also be discussed because drugs originally discovered for the treatment of non-CA related conditions (topiramate, zonisamide, celecoxib, pazopanib, thiazide, and high-ceiling diuretics) show effective inhibition against many CAs, which led to their repurposing for diverse pharmacological applications. SIGNIFICANCE STATEMENT: CAIs have multiple pharmacologic applications, such as diuretics, antiglaucoma, antiepileptic, antiobesity, antiacute mountain sickness, anti-idiopathic intracranial hypertension, and antitumor drugs. Their use in inflammatory conditions, cerebral ischemia, neuropathic pain, or neurodegenerations has started to be investigated recently. Parasite carbonic anhydrases are also drug targets for anti-infectives with novel mechanisms of action that can bypass drug resistance to commonly used agents. Drugs discovered for the management of other conditions that effectively inhibit these enzymes exert interesting polypharmacologic effects.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, University of Florence, Section of Pharmaceutical Sciences, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
2
|
Manaithiya A, Bhowmik R, Bhattacharya K, Ray R, Shyamal SS, Carta F, Supuran CT, Parkkila S, Aspatwar A. A cheminformatics and network pharmacology approach to elucidate the mechanism of action of Mycobacterium tuberculosis γ-carbonic anhydrase inhibitors. Front Pharmacol 2024; 15:1457012. [PMID: 39286631 PMCID: PMC11402817 DOI: 10.3389/fphar.2024.1457012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Background Mycobacterium tuberculosis (Mtb) carbonic anhydrases (CAs) are critical enzymes that regulate pH by converting CO2 to HCO3 -, essential for Mtb's survival in acidic environments. Inhibiting γ-CAs presents a potential target for novel antituberculosis drugs with unique mechanisms of action. Objective This study aimed to explore the biological connections underlying Mtb pathogenesis and investigate the mechanistic actions of antituberculosis compounds targeting the Cas9 protein. Methods We employed homology modeling and virtual screening to identify compounds with high binding affinities for Cas9 protein. This study used the homology modeling approach employing high-quality AlphaFold DB models for γ-CA. Furthermore, the systems biology approach was used for analyzing the integrated modelling of compounds, integrating data on genes, pathways, phenotypes, and molecular descriptors. Single-cell RNA sequencing was also conducted to profile gene expression. Results Three compounds, F10921405, F08060425, and F14437079, potentially binding to Cas9 protein, have been identified. F10921405 and F08060425 showed significant overlap in their effects on pathways related to the immune response, while F14437079 displayed distinct mechanistic pathways. Expression profiling revealed high levels of genes such as PDE4D, ROCK2, ITK, MAPK10, and SYK in response to F1092-1405 and F0806-0425, and MMP2 and CALCRL in response to F1443-7079. These genes, which play a role in immune modulation and lung tissue integrity, are essential to fight against Mtb. Conclusion The molecular relationship and pathways linked to the mentioned compounds give the study a holistic perspective of targeting Mtb, which is essential in designing specific therapeutic approaches. Subsequent research will involve experimental validation to demonstrate the efficacy of the promising candidates in Mtb infections.
Collapse
Affiliation(s)
- Ajay Manaithiya
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ratul Bhowmik
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kunal Bhattacharya
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam, India
- Royal School of Pharmacy, The Assam Royal Global University, Guwahati, Assam, India
| | - Rajarshi Ray
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sagar Singh Shyamal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Fabrizio Carta
- Department of Neuroscience, Psychology, Drug Research, and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Claudiu T Supuran
- Department of Neuroscience, Psychology, Drug Research, and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Ltd., Tampere University Hospital, Tampere, Finland
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
3
|
Giovannuzzi S, Nikitjuka A, Pereira Resende BR, Smietana M, Nocentini A, Supuran CT, Winum JY. Boron-containing carbonic anhydrases inhibitors. Bioorg Chem 2024; 143:106976. [PMID: 38000350 DOI: 10.1016/j.bioorg.2023.106976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/24/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
Over the last decades, the medicinal chemistry of boron-based compounds has been extensively explored, designing valuable small molecule drugs to tackle diseases and conditions, such as cancer, infections, inflammatory and neurological disorders. Notably, boron has proven to also be a valuable element for the development of inhibitors of the metalloenzymes carbonic anhydrases (CAs), a class of drug targets with significant potential in medicinal chemistry. Incorporating boron into carbonic anhydrase inhibitors (CAIs) can modulate the ligand ability to recognize the target and/or influence selectivity towards different CA isoforms, using the tail approach and boron-based tails. The electron-deficient nature of boron and its associated properties have also led to the discovery of novel zinc-binding CAIs, such as boronic acids and the benzoxaboroles, capable of inhibiting the CAs upon a Lewis acid-base mechanism of action. The present manuscript reviews the state-of-the-art of boron-based CAIs. As research in the applications of boron compounds in medicinal chemistry continues, it is anticipated that new boron-based CAIs will soon expand the current array of such compounds. However, further research is imperative to fully unlock the potential of boron-based CAIs and to advance them towards clinical applications.
Collapse
Affiliation(s)
- Simone Giovannuzzi
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France; Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Anna Nikitjuka
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France; Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Bruna Rafaela Pereira Resende
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France; Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | | | - Alessio Nocentini
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy.
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | | |
Collapse
|
4
|
Qureshi KA, Parvez A, Fahmy NA, Abdel Hady BH, Kumar S, Ganguly A, Atiya A, Elhassan GO, Alfadly SO, Parkkila S, Aspatwar A. Brucellosis: epidemiology, pathogenesis, diagnosis and treatment-a comprehensive review. Ann Med 2024; 55:2295398. [PMID: 38165919 PMCID: PMC10769134 DOI: 10.1080/07853890.2023.2295398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/12/2023] [Indexed: 01/04/2024] Open
Abstract
Background: Brucellosis is a pervasive zoonotic disease caused by various Brucella species. It mainly affects livestock and wildlife and poses significant public health threats, especially in regions with suboptimal hygiene, food safety, and veterinary care standards. Human contractions occur by consuming contaminated animal products or interacting with infected animals. Objective: This study aims to provide an updated understanding of brucellosis, from its epidemiology and pathogenesis to diagnosis and treatment strategies. It emphasizes the importance of ongoing research, knowledge exchange, and interdisciplinary collaboration for effective disease control and prevention, highlighting its global health implications. Methods: Pathogenesis involves intricate interactions between bacteria and the host immune system, resulting in chronic infections characterized by diverse clinical manifestations. The diagnostic process is arduous owing to non-specific symptomatology and sampling challenges, necessitating a fusion of clinical and laboratory evaluations, including blood cultures, serological assays, and molecular methods. Management typically entails multiple antibiotics, although the rise in antibiotic-resistant Brucella strains poses a problem. Animal vaccination is a potential strategy to curb the spread of infection, particularly within livestock populations. Results: The study provides insights into the complex pathogenesis of brucellosis, the challenges in its diagnosis, and the management strategies involving antibiotic therapy and animal vaccination. It also highlights the emerging issue of antibiotic-resistant Brucella strains. Conclusions: In conclusion, brucellosis is a significant zoonotic disease with implications for public health. Efforts should be directed towards improved diagnostic methods, antibiotic stewardship to combat antibiotic resistance, and developing and implementing effective animal vaccination programs. Interdisciplinary collaboration and ongoing research are crucial for addressing the global health implications of brucellosis.
Collapse
Affiliation(s)
- Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Adil Parvez
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India
| | - Nada A. Fahmy
- Center for Microbiology and Phage Therapy, Biomedical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Faculty of Applied Health Science, Galala University, Suez, Egypt
| | - Bassant H. Abdel Hady
- Center for Microbiology and Phage Therapy, Biomedical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Shweta Kumar
- Department of General Medicine, All India Institute of Medical Sciences, Bhopal, India
| | - Anusmita Ganguly
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Akhtar Atiya
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Abha, Saudi Arabia
| | - Gamal O. Elhassan
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | - Saeed O. Alfadly
- Department of Pharmacy Practice, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Pharmacy Practice, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
- Fimlab Ltd., Tampere University Hospital, Tampere, Finland
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Pharmacy Practice, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| |
Collapse
|
5
|
Abdoli M, De Luca V, Capasso C, Supuran CT, Žalubovskis R. Novel thiazolone-benzenesulphonamide inhibitors of human and bacterial carbonic anhydrases. J Enzyme Inhib Med Chem 2023; 38:2163243. [PMID: 36629426 PMCID: PMC9848287 DOI: 10.1080/14756366.2022.2163243] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A small library of novel thiazolone-benzenesulphonamides has been prepared and evaluated for their ability to inhibit three human cytosolic carbonic anhydrases (hCA I, hCA II, and hCA VII) and three bacterial carbonic anhydrases (MscCAβ, StCA1, and StCA2). All investigated hCAs were inhibited by the prepared compounds 4a-4j in the low nanomolar range. These compounds were effective hCA I inhibitors (KIs of 31.5-637.3 nM) and excellent hCA II (KIs in the range of 1.3-13.7 nM) and hCA VII inhibitors (KIs in the range of 0.9-14.6 nM). The most active analog in the series, 4-((4-oxo-5-propyl-4,5-dihydrothiazol-2-yl)amino)benzenesulphonamide 4d, strongly inhibited bacterial MscCAβ, with KI of 73.6 nM, considerably better than AAZ (KI of 625 nM). The tested compounds displayed medium inhibitory potency against StCA1 (KIs of 69.2-163.3 nM) when compared to the standard drug (KI of 59 nM). However, StCA2 was poorly inhibited by the sulphonamides reported here, with KIs in the micromolar range between 275.2 and 4875.0 nM.
Collapse
Affiliation(s)
- Morteza Abdoli
- Faculty of Materials Science and Applied Chemistry, Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia
| | - Viviana De Luca
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Clemente Capasso
- Department of Biology, Agriculture and Food Sciences, Institute of Biosciences and Bioresources, Napoli, Italy
| | - Claudiu T. Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy,Claudiu T. Supuran Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Universitàdegli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| | - Raivis Žalubovskis
- Faculty of Materials Science and Applied Chemistry, Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia,Latvian Institute of Organic Synthesis, Riga, Latvia,CONTACT Raivis Žalubovskis Latvian Institute of Organic Synthesis, 21 Aizkraukles Str, Riga, LV-1006, Latvia
| |
Collapse
|
6
|
Abdoli M, Bonardi A, Supuran CT, Žalubovskis R. Investigation of novel alkyl/benzyl (4-sulphamoylphenyl)carbamimidothioates as carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 2023; 38:2152811. [PMID: 36629134 PMCID: PMC9848269 DOI: 10.1080/14756366.2022.2152811] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A library of novel alkyl/benzyl (4-sulphamoylphenyl)carbamimidothioates was synthesised by selective S-alkylation of the easily accessible 4-thioureidobenzenesulphonamide. The compounds were assayed as inhibitors of four human (h) carbonic anhydrase isoforms hCA I, II, VII, and XIII, as well as three bacterial enzymes belonging to the β-CA class, MscCA from Mammaliicoccus (Staphylococcus) sciuri and StCA1 and StCA2, from Salmonella enterica (serovar Typhimurium). Most compounds investigated here exhibited moderate to low nanomolar inhibition constants against hCA I, II, and VII. The cytosolic hCA XIII was also inhibited by these compounds, but not as effective as hCA I, II, and VII. Several compounds were very effective against MscCA and StCA1. StCA2 was less inhibited compared to MscCA and StCA1. Some compounds showed considerable selectivity for inhibiting some CA isoforms. They may thus be considered as interesting starting points for the discovery and development of novel therapeutic agents belonging to this class of enzyme inhibitors.
Collapse
Affiliation(s)
- Morteza Abdoli
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia
| | - Alessandro Bonardi
- Neurofarba Department, Universita Degli Studi di Firenze, Florence, Italy
| | - Claudiu T. Supuran
- Neurofarba Department, Universita Degli Studi di Firenze, Florence, Italy,Claudiu T. Supuran Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Universitàdegli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| | - Raivis Žalubovskis
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Riga, Latvia,Latvian Institute of Organic Synthesis, Riga, Latvia,CONTACT Raivis Žalubovskis Latvian Institute of Organic Synthesis, 21 Aizkraukles Str, Riga, LV-1006, Latvia
| |
Collapse
|
7
|
Aspatwar A, Bonardi A, Aisala H, Zueva K, Primmer CR, Lumme J, Parkkila S, Supuran CT. Sulphonamide inhibition studies of the β-carbonic anhydrase GsaCAβ present in the salmon platyhelminth parasite Gyrodactylus salaris. J Enzyme Inhib Med Chem 2023; 38:2167988. [PMID: 36647786 PMCID: PMC9848252 DOI: 10.1080/14756366.2023.2167988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A β-class carbonic anhydrase (CA, EC 4.2.1.1) present in the genome of the Monogenean platyhelminth Gyrodactylus salaris, a fish parasite, GsaCAβ, has been investigated for its inhibitory effects with a panel of sulphonamides and sulfamates, some of which in clinical use. Several effective GsaCAβ inhibitors were identified, belonging to simple heterocyclic sulphonamides, the deacetylated precursors of acetazolamide and methazolamide (KIsof 81.9-139.7 nM). Many other simple benezene sulphonamides and clinically used agents, such as acetazolamide, methazolamide, ethoxzolamide, dorzolamide, benzolamide, sulthiame and hydrochlorothiazide showed inhibition constants <1 µM. The least effective GsaCAβ inhibitors were 4,6-disubstituted-1,3-benzene disulfonamides, with KIs in the range of 16.9-24.8 µM. Although no potent GsaCAβ-selective inhibitors were detected so far, this preliminary investigation may be helpful for better understanding the inhibition profile of this parasite enzyme and for the potential development of more effective and eventually parasite-selective inhibitors.
Collapse
Affiliation(s)
- Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland,CONTACT Ashok Aspatwar Faculty of Medicine and Health Technology, Tampere University, Via Ugo Schiff 6, Tampere, 50019, Finland
| | - Alessandro Bonardi
- Department of Neuroscience, Psychology, Drug Research and Child’s Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| | - Heidi Aisala
- Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Ksenia Zueva
- Department of Biology, University of Turku, Turku, Finland
| | - Craig R Primmer
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland,Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Jaakko Lumme
- Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland,Fimlab Ltd, Tampere University Hospital, Tampere, Finland
| | - Claudiu T. Supuran
- Department of Neuroscience, Psychology, Drug Research and Child’s Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy,Claudiu T. Supuran Department of Neuroscience, Psychology, Drug Research and Child’s Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
8
|
Supuran CT. A simple yet multifaceted 90 years old, evergreen enzyme: Carbonic anhydrase, its inhibition and activation. Bioorg Med Chem Lett 2023; 93:129411. [PMID: 37507055 DOI: 10.1016/j.bmcl.2023.129411] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Advances in the carbonic anhydrase (CA, EC 4.2.1.1) research over the last three decades are presented, with an emphasis on the deciphering of the activation mechanism, the development of isoform-selective inhibitors/ activators by the tail approach and their applications in the management of obesity, hypoxic tumors, neurological conditions, and as antiinfectives.
Collapse
Affiliation(s)
- Claudiu T Supuran
- Neurofarba Department, University of Florence, Section of Pharmaceutical Sciences, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
9
|
Benzenesulfonamides Incorporating Hydantoin Moieties Effectively Inhibit Eukaryoticand Human Carbonic Anhydrases. Int J Mol Sci 2022; 23:ijms232214115. [PMID: 36430592 PMCID: PMC9696710 DOI: 10.3390/ijms232214115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
A series of novel 1-(4-benzenesulfonamide)-3-alkyl/benzyl-hydantoin derivatives were synthesized and evaluated for the inhibition of eukaryotic and human carbonic anhydrases (CAs, EC 4.2.1.1). The prepared compounds were screened for their hCA inhibitory activities against three cytosolic isoforms as well as two β-CAs from fungal pathogens. The best inhibition was observed against hCA II and VII as well as Candida glabrata enzyme CgNce103. hCA I and Malassezia globosa MgCA enzymes were, on the other hand, less effectively inhibited by these compounds. The inhibitory potency of these compounds against CAs was found to be dependent on the electronic and steric effects of substituent groups on the N3-position of the hydantoin ring, which included alkyl, alkenyl and substituted benzyl moieties. The interesting results against CgNce103 make the compounds of interest for investigations in vivo as potential antifungals.
Collapse
|