1
|
Shaaban S, Alabdali AYM, Mousa MHA, Ba-Ghazal H, Al-Faiyz YS, Elghamry I, Althikrallah HA, Khatib AOA, Alaasar M, Al-Karmalawy AA. Innovative Multitarget Organoselenium Hybrids With Apoptotic and Anti-Inflammatory Properties Acting as JAK1/STAT3 Suppressors. Drug Dev Res 2025; 86:e70075. [PMID: 40103327 DOI: 10.1002/ddr.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/18/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
Herein, we report the design, synthesis, and characterization of novel organoselenium (OSe) hybrids (5-19) via modifications of the lead, N-(4-selaneylphenyl)-2-selaneylacetamide. The OSe-based thiazol 9 showed the highest growth inhibition % (GI%) of 64.72% relative to the positive reference doxorubicin (DOX), with a GI% of 79.5%. Furthermore, the novel OSe derivatives showed low GI% values compared to the normal cell lines employed, demonstrating their selectivity. The OSe tethered N-chloroacetamide 5 and Schiff base 19 showed a cytotoxic effect with an IC50 of (25.07 and 11.61 µM), respectively, against the A549 tumor cell line and IC50 of (34.22 and 20.12 µM), respectively, against the HELA cancer cell line. Enzyme-linked immunosorbent assay to study the JAK1 and the STAT3 inhibitory potentials of OSe compounds 5 and 19 in the A549 cancer cells both showed promising inhibitory activities with IC50 values of 25.07 and 11.61 µM, respectively. Protein expression analysis on the A549 cancer cell line on OSe compounds 5 and 19 showed upregulation of P53, BAX, and Caspases 3, 6, 8, and 9 as apoptotic proteins. However, both candidates expressed downregulation of the antiapoptotic proteins (BCL2, MMP2, and MMP9). Moreover, OSe compounds 5 and 19 described the downregulation of the examined inflammatory proteins: COX2, IL-6, and IL-1β. In addition, OSe compound 19 showed potential cell cycle arrest at the G0, S, and G2-M layers, with an increase in cellular levels. Finally, molecular docking studies of OSe compound 19 showed the most promising inhibitory potential toward the JAK1 and STAT3 target receptors, with binding scores and interactions exceeding that of the cocrystallized inhibitor of JAK1.
Collapse
Affiliation(s)
- Saad Shaaban
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | - Mai H A Mousa
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, Egypt
| | - Hussein Ba-Ghazal
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Yasair S Al-Faiyz
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Ibrahim Elghamry
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Hanan A Althikrallah
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Arwa Omar Al Khatib
- Faculty of Pharmacy, Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan
| | - Mohamed Alaasar
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Faculty of Natural, Science II, Institute of Chemistry, Martin-Luther University, Halle Saale, Germany
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, College of Pharmacy, The University of Mashreq, Baghdad, Iraq
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| |
Collapse
|
2
|
Abdel-Motaal M, Aldakhili DA, Farag AB, Elmaaty AA, Sharaky M, Mohamed NA, Shaaban S, Alzahrani AYA, Al-Karmalawy AA. Design and synthesis of novel multi-target tetrabromophthalimides as CBS and Topo-II inhibitors and DNA intercalators. RSC Med Chem 2024:d4md00585f. [PMID: 39290384 PMCID: PMC11403875 DOI: 10.1039/d4md00585f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024] Open
Abstract
Microtubules are highly dynamic structures and constitute a crucial component of the cellular cytoskeleton. Besides, topoisomerases (Topo) play a fundamental role in maintaining the appropriate structure and organization of DNA. On the other hand, dual mechanism drug candidates for cancer treatment primarily aim to enhance the efficacy of cancer treatment and potentially overcome drug resistance. Hence, this work was tailored to design and synthesize new multi-target tetrabromophthalimide derivatives (2a-2k) that are capable of inhibiting the colchicine binding site (CBS) and topoisomerase II (Topo-II). The conducted in vitro studies showed that compound 2f showed the lowest IC50 value (6.7 μg mL-1) against the MDA-MB-468 cancer cell line. Additionally, compound 2f prompted upregulation of pro-apoptotic markers (caspases 3, 7, 8, and 9, Bax and p53). Moreover, some anti-apoptotic proteins (MMP2, MMP9, and BCL-2) were downregulated by compound 2f treatment. Besides, the colchicine binding assay showed that compounds 2f and 2k displayed promising inhibitory potential with IC50 values of 1.92 and 4.84 μg mL-1, respectively, in comparison with colchicine (1.55 μg mL-1). Furthermore, the Topo-II inhibition assay displayed the prominent inhibitory potential of compound 2f with an IC50 value of 15.75 μg mL-1, surpassing the IC50 of etoposide (20.82 μg mL-1). Cell cycle analysis revealed that compound 2f induced cell cycle arrest at both the G0-G1 and G2-M phases. The new candidates were docked against both the CBS (PDB ID: 5XIW) and Topo-II (PDB ID: 5CDP) targets to investigate their binding interactions and affinities as well. Accordingly, the synthesized compounds could serve as promising multi-target anticancer candidates with eligible apoptotic activity.
Collapse
Affiliation(s)
- Marwa Abdel-Motaal
- Department of Chemistry, College of Science, Qassim University Buraydah 51452 Qassim Saudi Arabia
- Organic Chemistry Division, Department of Chemistry, College of Science, Mansoura University Mansoura Egypt
| | - Dalal Ali Aldakhili
- Department of Chemistry, College of Science, Qassim University Buraydah 51452 Qassim Saudi Arabia
| | - Ayman B Farag
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University 6th of October City Giza 12566 Egypt
| | - Ayman Abo Elmaaty
- Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University Port Said 42511 Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University Cairo Egypt
| | - Nadia A Mohamed
- Department of Chemistry, College of Science, Qassim University Buraydah 51452 Qassim Saudi Arabia
| | - Saad Shaaban
- Organic Chemistry Division, Department of Chemistry, College of Science, Mansoura University Mansoura Egypt
- Department of Chemistry, College of Science, King Faisal University P.O. Box 380 Al-Ahsa 31982 Saudi Arabia
| | | | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Mashreq Baghdad 10023 Iraq
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt New Damietta 34518 Egypt
| |
Collapse
|
3
|
Islam MS, Al-Jassas RM, Al-Majid AM, Haukka M, Nafie MS, Abu-Serie MM, Teleb M, El-Yazbi A, Alayyaf AMA, Barakat A, Shaaban MM. Exploiting spirooxindoles for dual DNA targeting/CDK2 inhibition and simultaneous mitigation of oxidative stress towards selective NSCLC therapy; synthesis, evaluation, and molecular modelling studies. RSC Med Chem 2024; 15:2937-2958. [PMID: 39149093 PMCID: PMC11324055 DOI: 10.1039/d4md00337c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024] Open
Abstract
The unique structure of spirooxindoles and their ability to feature various pharmacophoric motifs render them privileged scaffolds for tailoring new multitarget anticancer agents. Herein, a stereoselective multicomponent reaction was utilized to generate a small combinatorial library of pyrazole-tethered spirooxindoles targeting DNA and CDK2 with free radical scavenging potential as an extra bonus. The designed spirooxindoles were directed to combat NSCLC via inducing apoptosis and alleviating oxidative stress. The series' absolute configuration was assigned by X-ray diffraction analysis. Cytotoxicity screening of the developed spirooxindoles against NSCLC A549 and H460 cells compared to normal lung fibroblasts Wi-38 revealed the sensitivity of A549 cells to the compounds and raised 6e and 6h as the study hits (IC50 ∼ 0.09 μM and SI > 3). They damaged DNA at 24.6 and 35.3 nM, and surpassed roscovitine as CDK2 inhibitors (IC50 = 75.6 and 80.2 nM). Docking and MDs simulations postulated their receptors binding modes. The most potent derivative, 6e, induced A549 apoptosis by 40.85% arresting cell cycle at G2/M phase, and exhibited antioxidant activity in a dose-dependent manner compared to Trolox as indicated by DPPH scavenging assay. Finally, in silico ADMET analysis predicted the drug-likeness properties of 6e.
Collapse
Affiliation(s)
- Mohammad Shahidul Islam
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Refaah M Al-Jassas
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Abdullah Mohammed Al-Majid
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä P.O. Box 35 FI-40014 Jyväskylä Finland
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah Sharjah (P.O. Box 27272) United Arab Emirates
- Chemistry Department, Faculty of Science, Suez Canal University Ismailia 41522 Egypt
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City) Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt
| | - Amira El-Yazbi
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Alexandria University Alexandria Egypt
| | | | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Marwa M Shaaban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University Alexandria 21521 Egypt
| |
Collapse
|
4
|
Tawfik HO, Mousa MHA, Zaky MY, El-Dessouki AM, Sharaky M, Abdullah O, El-Hamamsy MH, Al-Karmalawy AA. Rationale design of novel substituted 1,3,5-triazine candidates as dual IDH1(R132H)/ IDH2(R140Q) inhibitors with high selectivity against acute myeloid leukemia: In vitro and in vivo preclinical investigations. Bioorg Chem 2024; 149:107483. [PMID: 38805913 DOI: 10.1016/j.bioorg.2024.107483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
In this study, novel substituted 1,3,5-triazine candidates (4a-d, 5a-j, and 6a-d) were designed as second-generation small molecules to act as dual IDH1 and IDH2 inhibitors according to the pharmacophoric features of both vorasidenib and enasidenib. Compounds 6a and 6b for leukemia cell lines showed from low to sub-micromolar GI50. Moreover, compounds 4c, 5f, and 6b described the frontier antitumor activity against THP1 and Kasumi Leukemia cancer cells with IC50 values of (10 and 12), (10.5 and 7), and (6.2 and 5.9) µg/mL, which were superior to those of cisplatin (25 and 28) µg/mL, respectively. Interestingly, compounds 4c, 6b, and 6d represented the best dual IDH1(R132H)/IDH2(R140Q) inhibitory potentials with IC50 values of (0.72 and 1.22), (0.12 and 0.93), and (0.50 and 1.28) µg/mL, respectively, compared to vorasidenib (0.02 and 0.08) µg/mL and enasidenib (0.33 and 1.80) µg/mL. Furthermore, the most active candidate (6b) has very promising inhibitory potentials towards HIF-1α, VEGF, and SDH, besides, a marked increase of ROS was observed as well. Besides, compound 6b induced the upregulation of P53, BAX, Caspases 3, 6, 8, and 9 proteins by 3.70, 1.99, 2.06, 1.73, 1.75, and 1.85-fold changes, respectively, and the downregulation for the BCL-2 protein by 0.55-fold change compared to the control. Besides, the in vivo behavior of compound 6b as an antitumor agent was evaluated in female mice bearing solid Ehrlich carcinoma tumors. Notably, compound 6b administration resulted in a prominent decrease in the weight and volume of the tumors, accompanied by improvements in biochemical, hematological, and histological parameters.
Collapse
Affiliation(s)
- Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Mai H A Mousa
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo 11786, Egypt
| | - Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| | - Ahmed M El-Dessouki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt
| | - Omeima Abdullah
- Pharmaceutical Sciences Department, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mervat H El-Hamamsy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt.
| |
Collapse
|
5
|
Shaaban S, Althikrallah HA, Negm A, Abo Elmaaty A, Al-Karmalawy AA. Repurposed organoselenium tethered amidic acids as apoptosis inducers in melanoma cancer via P53, BAX, caspases-3, 6, 8, 9, BCL-2, MMP2, and MMP9 modulations. RSC Adv 2024; 14:18576-18587. [PMID: 38860260 PMCID: PMC11164031 DOI: 10.1039/d4ra02944e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024] Open
Abstract
Organoselenium (OSe) agents hold promise for preventing cancer due to their potential ability to fight cancer development and protect cells from oxidative damage. Herein, OSe-based maleanilic and succinanilic acids were tested to estimate their antitumor activities against fifteen cancer cell lines. Besides, their potential safety and selectivity were further investigated against two normal cell lines, namely, human skin fibroblasts (HSF) and olfactory ensheathing cell line (OEC) using the growth inhibition percentage (GI%) assay. Moreover, the apoptotic potential of the superior anticancer candidates (8, 9, 10, and 11) was evaluated against P53, BAX, Caspase-3, Caspase-6, Caspase-8, Caspase-9, BCL-2, MMP2, and MMP9 apoptotic markers. Additionally, to enhance our understanding and predict the inhibitory potential of the examined compounds as potential anticancer agents, a thorough structure-activity relationship (SAR) analysis was conducted. On the other hand, molecular docking and ADMET studies were performed for the examined candidates as well. Overall, our findings point to significant anticancer activities of the organoselenium tethered amidic acids, suggesting their promising cytotoxic potential as effective anticancer drugs.
Collapse
Affiliation(s)
- Saad Shaaban
- Department of Chemistry, College of Science, King Faisal University Al-Ahsa 31982 Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University 35516 Mansoura Egypt
| | - Hanan A Althikrallah
- Department of Chemistry, College of Science, King Faisal University Al-Ahsa 31982 Saudi Arabia
| | - Amr Negm
- Department of Chemistry, College of Science, King Faisal University Al-Ahsa 31982 Saudi Arabia
| | - Ayman Abo Elmaaty
- Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University Port Said 42511 Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt New Damietta 34518 Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University 6th of October City Giza 12566 Egypt
| |
Collapse
|
6
|
Abdel-Motaal M, Aldakhili DA, Abo Elmaaty A, Sharaky M, Mourad MAE, Alzahrani AYA, Mohamed NA, Al-Karmalawy AA. Design and synthesis of novel tetrabromophthalimide derivatives as potential tubulin inhibitors endowed with apoptotic induction for cancer treatment. Drug Dev Res 2024; 85:e22197. [PMID: 38751223 DOI: 10.1002/ddr.22197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024]
Abstract
Although various approaches exist for treating cancer, chemotherapy continues to hold a prominent role in the management of this disease. Besides, microtubules serve as a vital component of the cellular skeleton, playing a pivotal role in the process of cell division making it an attractive target for cancer treatment. Hence, the scope of this work was adapted to design and synthesize new anti-tubulin tetrabromophthalimide hybrids (3-17) with colchicine binding site (CBS) inhibitory potential. The conducted in vitro studies showed that compound 16 displayed the lowest IC50 values (11.46 µM) at the FaDu cancer cell lines, whereas compound 17 exhibited the lowest IC50 value (13.62 µM) at the PC3 cancer cell line. However, compound 7b exhibited the lowest IC50 value (11.45 µM) at the MDA-MB-468 cancer cell line. Moreover, compound 17 was observed to be the superior antitumor candidate against all three tested cancer cell lines (MDA-MB-468, PC3, and FaDu) with IC50 values of 17.22, 13.15, and 13.62 µM, respectively. In addition, compound 17 showed a well-established upregulation of apoptotic markers (Caspases 3, 7, 8, and 9, Bax, and P53). Moreover, compound 17 induced downregulation of the antiapoptotic markers (MMP2, MMP9, and BCL-2). Furthermore, the colchicine binding site inhibition assay showed that compounds 15a and 17 exhibited particularly significant inhibitory potentials, with IC50 values of 23.07 and 4.25 µM, respectively, compared to colchicine, which had an IC50 value of 3.89 µM. Additionally, cell cycle analysis was conducted, showing that compound 17 could prompt cell cycle arrest at both the G0-G1 and G2-M phases. On the other hand, a molecular docking approach was applied to investigate the binding interactions of the examined candidates compared to colchicine towards CBS of the β-tubulin subunit. Thus, the synthesized tetrabromophthalimide hybrids can be regarded as outstanding anticancer candidates with significant apoptotic activity.
Collapse
Affiliation(s)
- Marwa Abdel-Motaal
- Department of Chemistry, College of Science, Qassim University, Buraydah, Saudi Arabia
- Department of Chemistry, Organic Chemistry Division, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Dalal A Aldakhili
- Department of Chemistry, College of Science, Qassim University, Buraydah, Saudi Arabia
| | - Ayman Abo Elmaaty
- Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, Cairo, Egypt
- Biochemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October, Egypt
| | - Mai A E Mourad
- Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Abdullah Y A Alzahrani
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail Assir, Saudi Arabia
| | - Nadia A Mohamed
- Department of Chemistry, College of Science, Qassim University, Buraydah, Saudi Arabia
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| |
Collapse
|
7
|
Eid NM, Al-Karmalawy AA, Eldebss TMA, Elhakim HKA. Investigating the Promising Anticancer Activity of Cetuximab and Fenbendazole Combination as Dual CBS and VEGFR-2 Inhibitors and Endowed with Apoptotic Potential. Chem Biodivers 2024; 21:e202302081. [PMID: 38318954 DOI: 10.1002/cbdv.202302081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/07/2024]
Abstract
In this work, the cytotoxicity of monoclonal antibody (Cetuximab, Ce) and Fenbendazole (Fen), as well as their combination therapy were tested with the MTT assay. On the other side, Ce, Fen, and a combination between them were subjected to a colchicine-tubulin binding test, which was conducted and compared to Colchicine as a reference standard. Besides, Ce, Fen, and the combination of them were tested against the VEGFR-2 target receptor, compared to Sorafenib as the standard medication. Moreover, the qRT-PCR technique was used to investigate the levels of apoptotic genes (p53 and Bax) and anti-apoptotic gene (Bcl-2) as well. Also, the effect of Ce, Fen, and the combination of them on the level of ROS was studied. Furthermore, the cell cycle analysis and Annexin V apoptosis assay were carried out for Ce, Fen, and a combination of them. In addition, the molecular docking studies were used to describe the molecular levels of interactions for both (Fen and colchicine) or (Fen and sorafenib) within the binding pockets of the colchicine binding site (CBS) and vascular endothelial growth factor-2 receptor (VEGFR-2), respectively.
Collapse
Affiliation(s)
- Norhan M Eid
- Biochemistry Division, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
| | - Taha M A Eldebss
- Chemistry Division, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Heba K A Elhakim
- Biochemistry Division, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
8
|
Abdelrahman NA, Al-Karmalawy AA, Jaballah MY, Yahya G, Sharaky M, Abouzid KAM. Design and synthesis of novel chloropyridazine hybrids as promising anticancer agents acting by apoptosis induction and PARP-1 inhibition through a molecular hybridization strategy. RSC Med Chem 2024; 15:981-997. [PMID: 38516606 PMCID: PMC10953493 DOI: 10.1039/d3md00751k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/06/2024] [Indexed: 03/23/2024] Open
Abstract
Guided by the molecular hybridization principle, a novel series of 4-chloropyridazinoxyphenyl conjugates (3a-h, 4a-e, and 5) was designed and synthesized as proposed apoptotic inducers and PARP-1 inhibitors. The growth inhibition % of the designed hybrids was investigated in eleven cancer cell lines, where the anticancer activities were found to be in the following order: 4-chloropyridazinoxyphenyl-aromatic ketones hybrids (3a-h) > 4-chloropyridazinoxyphenyl-benzyloxyphenylethan-1-one hybrids (4a-e) > 4-chloropyridazinoxyphenyl-thiazolidine-2,4-dione hybrid (5). Further, the most sensitive three cancer cell lines (HNO97, FaDu, and MDA-MB-468) were selected to measure the IC50 values of the new hybrids. Moreover, the frontier three members (3c, 3e, and 4b) were selected for the measurements of apoptotic protein markers (p53, BAX, caspase 3, caspase 6, BCL-2, and CK 18). Besides, the impact of compounds 3a-e and 4b on the activity of PARP-1 was investigated, where 3c, 3d, and 3e demonstrated comparable efficiencies to olaparib. Furthermore, γ-H2Ax, a well-established marker for double-strand DNA breaks, was examined and the occurrence of DNA damage was observed. In addition, a significant inhibition of cell proliferation and a remarkable 15 to 50-fold reduction in the number of colonies compared to the control group were recorded. Finally, the PARP-1 inhibitory potential of the novel hybrids was compared to the co-crystal of the target receptor (PDB ID: 6NTU) using molecular docking.
Collapse
Affiliation(s)
- Norhan A Abdelrahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain-Shams University Cairo 11566 Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt New Damietta 34518 Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ahram Canadian University 6th of October City Giza 12566 Egypt
| | - Maiy Y Jaballah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain-Shams University Cairo 11566 Egypt
| | - Galal Yahya
- Department of Microbiology and Immunology, Zagazig University Zagazig 44519 Egypt
- Molecular Biology Institute of Barcelona, Spanish National Research Council Catalonia Spain
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University Cairo Egypt
- Biochemistry Department, Faculty of Pharmacy, Ahram Canadian University 6th of October City Giza 12566 Egypt
| | - Khaled A M Abouzid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain-Shams University Cairo 11566 Egypt
| |
Collapse
|
9
|
Çevik UA, Kaya B, Celik I, Rudrapal M, Rakshit G, Karayel A, Levent S, Osmaniye D, Sağlık Özkan BN, Baysal M, Atlı Ekliog̈lu Ö, Özkay Y, Kaplancıklı ZA. New Benzimidazole-Triazole Derivatives as Topoisomerase I Inhibitors: Design, Synthesis, Anticancer Screening, and Molecular Modeling Studies. ACS OMEGA 2024; 9:13359-13372. [PMID: 38524479 PMCID: PMC10955584 DOI: 10.1021/acsomega.3c10345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/26/2024]
Abstract
In this study, we designed, synthesized, and evaluated a series of 1,2,4-triazole benzimidazoles for their cytotoxic effects against the A549, C6, and NIH3T3 cell lines. Additionally, these compounds were assessed for their inhibitory activity against DNA topoisomerase I, aiming to develop novel anticancer agents. The synthesized final compounds 4a-h were characterized using 1H NMR, 13C NMR, and HRMS. Among them, compounds 4b and 4h emerged as the most potent agents against the A549 cell line, exhibiting an IC50 value of 7.34 ± 0.21 μM and 4.56 ± 0.18 μM, respectively. These results were compared to standard drugs, doxorubicin (IC50 = 12.420 ± 0.5 μM) and Hoechst 33342 (IC50 = 0.422 ± 0.02 μM). Notably, all tested compounds displayed higher cytotoxicity toward A549 cells than C6 cells. Compounds 4b and 4h demonstrated significant inhibitory activity against topoisomerase I, highlighting their potential as lead compounds in anticancer therapy. Subsequent in silico molecular docking studies were conducted to elucidate the potential binding interactions of compounds 4b and 4h with the target enzyme topoisomerase I. Molecular dynamics studies also assessed and validated the binding affinity and stability. These studies confirmed the promising binding affinity of these compounds, reinforcing their status as lead candidates. According to DFT, compound 4b having the lower energy gap value (ΔE = 3.598 eV) is more chemically reactive than the others, which is consistent with significant inhibitory activity against topoisomerase I. Furthermore, in silico ADME profiles for compounds 4b and 4h were evaluated using SwissADME, providing insights into their pharmacokinetic properties.
Collapse
Affiliation(s)
- Ulviye Acar Çevik
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eski̧ehir 26470, Turkey
| | - Betül Kaya
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Zonguldak Bülent Ecevit University, Zonguldak 67100, Turkey
| | - Ismail Celik
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Mithun Rudrapal
- Department
of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical
Sciences, Vignan’s Foundation for
Science, Technology & Research (Deemed to Be University), Guntur 522213, India
| | - Gourav Rakshit
- Department
of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi 835215, India
| | - Arzu Karayel
- Department
of Physics, Faculty of Arts and Science, Hitit University, Çorum 19030, Turkey
| | - Serkan Levent
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eski̧ehir 26470, Turkey
| | - Derya Osmaniye
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eski̧ehir 26470, Turkey
| | | | - Merve Baysal
- Department
of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Eski̧ehir 26470, Turkey
| | - Özlem Atlı Ekliog̈lu
- Department
of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, Eski̧ehir 26470, Turkey
| | - Yusuf Özkay
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eski̧ehir 26470, Turkey
| | - Zafer Asım Kaplancıklı
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eski̧ehir 26470, Turkey
| |
Collapse
|
10
|
Farouk F, Ibrahim IM, Sherif S, Abdelhamed HG, Sharaky M, Al-Karmalawy AA. Investigating the effect of polymerase inhibitors on cellular proliferation: Computational studies, cytotoxicity, CDK1 inhibitory potential, and LC-MS/MS cancer cell entrapment assays. Chem Biol Drug Des 2024; 103:e14500. [PMID: 38467555 DOI: 10.1111/cbdd.14500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/04/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024]
Abstract
Directly acting antivirals (DAAs) are a breakthrough in the treatment of HCV. There are controversial reports on their tendency to induce hepatocellular carcinoma (HCC) in HCV patients. Numerous reports have concluded that the HCC is attributed to patient-related factors while others are inclined to attribute this as a DAA side-effect. This study aims to investigate the effect of polymerase inhibitor DAAs, especially daclatasivir (DLT) on cellular proliferation as compared to ribavirin (RBV). The interaction of DAAs with variable cell-cycle proteins was studied in silico. The binding affinities to multiple cellular targets were investigated and the molecular dynamics were assessed. The in vitro effect of the selected candidate DLT on cancer cell proliferation was determined and the CDK1 inhibitory potential in was evaluated. Finally, the cellular entrapment of the selected candidates was assessed by an in-house developed and validated LC-MS/MS method. The results indicated that polymerase inhibitor antiviral agents, especially DLT, may exert an anti-proliferative potential against variable cancer cell lines. The results showed that the effect may be achieved via potential interaction with the multiple cellular targets, including the CDK1, resulting in halting of the cellular proliferation. DLT exhibited a remarkable cell permeability in the liver cancer cell line which permits adequate interaction with the cellular targets. In conclusion, the results reveal that the polymerase inhibitor (DLT) may have an anti-proliferative potential against liver cancer cells. These results may pose DLT as a therapeutic choice for patients suffering from HCV and are liable to HCC development.
Collapse
Affiliation(s)
- Faten Farouk
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Salma Sherif
- Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | | | - Marwa Sharaky
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Biochemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| |
Collapse
|
11
|
Al-Karmalawy AA, Mousa MHA, Sharaky M, Mourad MAE, El-Dessouki AM, Hamouda AO, Alnajjar R, Ayed AA, Shaldam MA, Tawfik HO. Lead Optimization of BIBR1591 To Improve Its Telomerase Inhibitory Activity: Design and Synthesis of Novel Four Chemical Series with In Silico, In Vitro, and In Vivo Preclinical Assessments. J Med Chem 2024; 67:492-512. [PMID: 38117230 DOI: 10.1021/acs.jmedchem.3c01708] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Herein, modifications to the previously reported BIBR1591 were conducted to obtain bioisosteric candidates with improved activities. The % inhibition of the newly afforded candidates against the telomerase target was investigated. Notably, 6f achieved superior telomerase inhibition (63.14%) compared to BIBR1532 and BIBR1591 (69.64 and 51.58%, respectively). In addition, 8a and 8b showed comparable promising telomerase inhibition with 58.65 and 55.57%, respectively, which were recorded to be frontier to that of BIBR1591. 6f, 8a, and 8b were tested against five cancer cell lines related to the lung and liver subtypes. Moreover, 6f was examined on both cell cycle progression and apoptosis induction in HuH7 cancer cells. Furthermore, the in vivo antitumor activity of 6f was further assessed in female mice with solid Ehrlich carcinoma. In addition, molecular docking and molecular dynamics simulations were carried out. Collectively, 6f, 8a, and 8b could be considered potential new telomerase inhibitors to be subjected to further investigation and/or optimization.
Collapse
Affiliation(s)
- Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6h of October City, Giza 12566, Egypt
| | - Mai H A Mousa
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo 11786, Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo 12613, Egypt
| | - Mai A E Mourad
- Medicinal Chemistry Department, Faculty of Pharmacy, Port-Said University, Port-Said 42511, Egypt
| | - Ahmed M El-Dessouki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt
| | - Amir O Hamouda
- Department of Biochemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Radwan Alnajjar
- Department of Chemistry, Faculty of Science, University of Benghazi, Benghazi 1308, Libya
- PharmD, Faculty of Pharmacy, Libyan International Medical University, Benghazi 1308, Libya
| | - Abdelmoneim A Ayed
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
12
|
Abbass EM, Al-Karmalawy AA, Sharaky M, Khattab M, Alzahrani AYA, Hassaballah AI. Rational design and eco-friendly one-pot multicomponent synthesis of novel ethylidenehydrazineylthiazol-4(5H)-ones as potential apoptotic inducers targeting wild and mutant EGFR-TK in triple negative breast cancer. Bioorg Chem 2024; 142:106936. [PMID: 37890211 DOI: 10.1016/j.bioorg.2023.106936] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/15/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023]
Abstract
A novel series of ethylidenehydrazineylthiazol-4(5H)-ones were synthesized using various eco-friendly one-pot multicomponent synthetic techniques. The anticancer activity of compounds (4a-m) was tested against 11 cancer cell lines. While the IC50 of all compounds was evaluated against the most sensitive cell lines (MDA-MB-468 and FaDu). Our SAR study pinpointed that compound 4a, having a phenyl substituent, exhibited a significant growth inhibition % against all cancer cell lines. The frontier anticancer candidates against the MDA-MB-468 were also examined against the wild EGFR (EGFR-WT) and mutant EGFR (EGFR-T790M) receptors. Most of the synthesized compounds exhibited a higher inhibitory potential against EGFR-T790M than the wild type of EGFR. Remarkably, compound 4k exhibited the highest inhibitory activity against both EGFR-WT and EGFR-T790M with IC50 values (0.051 and 0.021 µM), respectively. The pro-apoptotic protein markers (p53, BAX, caspase 3, caspase 6, caspase 8, and caspase 9) and the anti-apoptotic key marker (BCL-2) were also measured to propose a mechanism of action for the compound 4k as an apoptotic inducer for MDA-MB-468. Investigation of the cell cycle arrest potential of compound 4k was also conducted on MDA-MB-468 cancer cells. We also evaluated the inhibitory activities of compounds (4a-m) against both EGFR-WT and EGFR-T790M using two different molecular docking processes.
Collapse
Affiliation(s)
- Eslam M Abbass
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassiya 11566, Cairo, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt.
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo, Egypt
| | - Muhammad Khattab
- Office of Research, University of Western Australia, Perth, Australia; Department of Chemistry of Natural and Microbial Products, Division of Pharmaceutical and Drug Industries, National Research Centre, Cairo, Egypt
| | | | - Aya I Hassaballah
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassiya 11566, Cairo, Egypt
| |
Collapse
|
13
|
Gaber AA, Sharaky M, Elmaaty AA, Hammouda MM, Mourad AA, Elkhawaga SY, Mokhtar MM, Abouzied AS, Mourad MA, Al-Karmalawy AA. Design and synthesis of novel pyrazolopyrimidine candidates as promising EGFR-T790M inhibitors and apoptosis inducers. Future Med Chem 2023; 15:1773-1790. [PMID: 37882053 DOI: 10.4155/fmc-2023-0156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023] Open
Abstract
Aim: Our objective was to design and synthesize a new range of pyrazolopyrimidines while maintaining the key pharmacophoric features of EGFR tyrosine kinase inhibitors. Materials & methods: Percentage inhibition in 14 human cancer cell lines and IC50 values were recorded. Compounds 6c, 7e and 7f were examined against both wild and mutant (T790M) EGFR subtypes. Apoptosis markers, cell cycle arrest, apoptosis assay and molecular docking were performed. Results: Compounds 6c, 7e and 7f demonstrated superior inhibitory potentials against wild and mutant (T790M) EGFR subtypes. A molecular docking study showed that compounds 6c and 7e had the best fit. Conclusion: The designed candidates demonstrated superior inhibitory potential as promising EGFR-T790M inhibitors that agrees with the proposed rationale.
Collapse
Affiliation(s)
- Ahmed A Gaber
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Marwa Sharaky
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ayman Abo Elmaaty
- Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, 42511, Egypt
| | - Mohamed M Hammouda
- Department of Chemistry, College of Science & Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed Ae Mourad
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Port Said University, Port Said, 42511, Egypt
| | - Samy Y Elkhawaga
- Biochemistry & Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
| | - Mahmoud Mohamed Mokhtar
- Biochemistry & Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
| | - Amr S Abouzied
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, 81442, Saudi Arabia
- Department of Pharmaceutical Chemistry, National Organization for Drug Control & Research, Giza, 12553, Egypt
| | - Mai Ae Mourad
- Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, 42511, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
| |
Collapse
|