1
|
Yang W, Wang Y, Han D, Tang W, Sun L. Recent advances in application of computer-aided drug design in anti-COVID-19 Virials Drug Discovery. Biomed Pharmacother 2024; 173:116423. [PMID: 38493593 DOI: 10.1016/j.biopha.2024.116423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024] Open
Abstract
Corona Virus Disease 2019 (COVID-19) is a global pandemic epidemic caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which poses a serious threat to human health worldwide and results in significant economic losses. With the continuous emergence of new virus strains, small molecule drugs remain the most effective treatment for COVID-19. The traditional drug development process usually requires several years; however, the development of computer-aided drug design (CADD) offers the opportunity to develop innovative drugs quickly and efficiently. The literature review describes the general process of CADD, the viral proteins that play essential roles in the life cycle of SARS-CoV-2 and can serve as therapeutic targets, and examples of drug screening of viral target proteins by applying CADD methods. Finally, the potential of CADD in COVID-19 therapy, the deficiency, and the possible future development direction are discussed.
Collapse
Affiliation(s)
- Weiying Yang
- Department of Emergency Medicine, First Hospital of Jilin University, Changchun 130021, China
| | - Ye Wang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Dongfeng Han
- Department of Emergency Medicine, First Hospital of Jilin University, Changchun 130021, China
| | - Wenjing Tang
- Department of Emergency Medicine, First Hospital of Jilin University, Changchun 130021, China
| | - Lichao Sun
- Department of Emergency Medicine, First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
2
|
Sun Q, Ning Q, Li T, Jiang Q, Feng S, Tang N, Cui D, Wang K. Immunochromatographic enhancement strategy for SARS-CoV-2 detection based on nanotechnology. NANOSCALE 2023; 15:15092-15107. [PMID: 37676509 DOI: 10.1039/d3nr02396f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The global outbreak of coronavirus disease 2019 (COVID-19) has been catastrophic to both human health and social development. Therefore, developing highly reliable and sensitive point-of-care testing (POCT) for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a priority. Among all available POCTs, the lateral flow immunoassay (LFIA, also known as immunochromatography) has proved to be effective due to its accuracy, portability, convenience, and speed. In areas with a scarcity of laboratory resources and medical personnel, the LFIA provides an affordable option for the diagnosis of COVID-19. This review offers a comprehensive overview of methods for improving the sensitivity of SARS-CoV-2 detection using immunochromatography based on nanotechnology, sorted according to the different detection targets (antigens, antibodies, and nucleic acids). It also looks into the performance and properties of the various sensitivity enhancement strategies, before delving into the remaining challenges in COVID-19 diagnosis through LFIA. Ultimately, it seeks to provide helpful guidance in selecting an appropriate strategy for SARS-CoV-2 immunochromatographic detection based on nanotechnology.
Collapse
Affiliation(s)
- Qingwen Sun
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, 200240, China.
| | - Qihong Ning
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, 200240, China.
| | - Tangan Li
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, 200240, China.
| | - Qixia Jiang
- Department of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai, 200336, China
| | - Shaoqing Feng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, China
| | - Ning Tang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, 200240, China.
| | - Daxiang Cui
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, 200240, China.
| | - Kan Wang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai, 200240, China.
| |
Collapse
|