1
|
Fernandes GD, Laureano Gandur N, Santos D, Maldonado V. The Sub 2-h Official Marathon is Possible: Developing a Drafting Strategy for a Historic Breakthrough in Sports. SPORTS MEDICINE - OPEN 2025; 11:11. [PMID: 39870919 PMCID: PMC11772656 DOI: 10.1186/s40798-024-00802-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/04/2024] [Indexed: 01/29/2025]
Abstract
BACKGROUND Drafting for drag reduction is a tactic commonly employed by elite athletes of various sports. The strategy has been adopted by Kenyan runner Eliud Kipchoge on numerous marathon events in the past, including the 2018 and 2022 editions of the Berlin marathon (where Kipchoge set two official world records), as well as in two special attempts to break the 2 h mark for the distance, the Nike Breaking2 (2017) and the INEOS 1:59 Challenge (2019), where Kipchoge used an improved drafting formation to finish in 1:59:40, although that is not recognized as an official record. RESULTS In this study, the drag of a realistic model of a male runner is calculated by computational fluid dynamics for a range of velocities. The formations employed in the past by Kipchoge, as well as alternative formations, are analyzed and systematically compared with respect to mechanical power. In a quest to show that running an official marathon in under 2 h is possible, the power analysis is extended to the pacers. We developed a simple drafting and pacing strategy that Kipchoge could have used to run the 2022 Berlin marathon in a surprising 1 h, 59 min and 48 s. CONCLUSIONS Elite marathon runners can make better use of the pacers to experience reduced drag in races. The associated energy reduction makes it possible to run faster, finishing the race in less time. Using a better drafting strategy and a positive splitting pacing strategy, Kenyan runner Eliud Kipchoge could have broken the sub 2 h barrier in both the 2018 and 2022 editions of Berlin Marathon.
Collapse
Affiliation(s)
- G D Fernandes
- Mechanical Engineering Department, Texas Tech University, Lubbock, TX, USA.
| | - Nazir Laureano Gandur
- Department of Aerospace Engineering, Embry-Riddle Aeronautical University, Prescott, AZ, USA
| | - Dioser Santos
- Mechanical Engineering Department, Texas Tech University, Lubbock, TX, USA
| | - Victor Maldonado
- Mechanical Engineering Department, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
2
|
Bennett T, Marshall P, Barrett S, Malone JJ, Towlson C. Brief Review of Methods to Quantify High-Speed Running in Rugby League: Are Current Methods Appropriate? Strength Cond J 2022. [DOI: 10.1519/ssc.0000000000000693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
3
|
Harper DJ, McBurnie AJ, Santos TD, Eriksrud O, Evans M, Cohen DD, Rhodes D, Carling C, Kiely J. Biomechanical and Neuromuscular Performance Requirements of Horizontal Deceleration: A Review with Implications for Random Intermittent Multi-Directional Sports. Sports Med 2022; 52:2321-2354. [PMID: 35643876 PMCID: PMC9474351 DOI: 10.1007/s40279-022-01693-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2022] [Indexed: 11/28/2022]
Abstract
Rapid horizontal accelerations and decelerations are crucial events enabling the changes of velocity and direction integral to sports involving random intermittent multi-directional movements. However, relative to horizontal acceleration, there have been considerably fewer scientific investigations into the biomechanical and neuromuscular demands of horizontal deceleration and the qualities underpinning horizontal deceleration performance. Accordingly, the aims of this review article are to: (1) conduct an evidence-based review of the biomechanical demands of horizontal deceleration and (2) identify biomechanical and neuromuscular performance determinants of horizontal deceleration, with the aim of outlining relevant performance implications for random intermittent multi-directional sports. We highlight that horizontal decelerations have a unique ground reaction force profile, characterised by high-impact peak forces and loading rates. The highest magnitude of these forces occurs during the early stance phase (< 50 ms) and is shown to be up to 2.7 times greater than those seen during the first steps of a maximal horizontal acceleration. As such, inability for either limb to tolerate these forces may result in a diminished ability to brake, subsequently reducing deceleration capacity, and increasing vulnerability to excessive forces that could heighten injury risk and severity of muscle damage. Two factors are highlighted as especially important for enhancing horizontal deceleration ability: (1) braking force control and (2) braking force attenuation. Whilst various eccentric strength qualities have been reported to be important for achieving these purposes, the potential importance of concentric, isometric and reactive strength, in addition to an enhanced technical ability to apply braking force is also highlighted. Last, the review provides recommended research directions to enhance future understanding of horizontal deceleration ability.
Collapse
Affiliation(s)
- Damian J. Harper
- Institute of Coaching and Performance, School of Sport and Health Sciences, University of Central Lancashire, Fylde Road, Preston, PR1 2HE UK
| | - Alistair J. McBurnie
- Department of Football Medicine and Science, Manchester United Football Club, AON Training Complex, Manchester, UK
| | - Thomas Dos’ Santos
- Department of Sport and Exercise Sciences, Musculoskeletal Science and Sports Medicine Research Centre, Manchester Metropolitan University, Manchester, UK
| | - Ola Eriksrud
- Biomechanics Laboratory, Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Martin Evans
- The FA Group, St George’s Park, Burton-Upon-Trent, Staffordshire, UK
| | - Daniel D. Cohen
- Faculty of Health Sciences, Masira Research Institute, University of Santander, Bucaramanga, Colombia
- Sports Science Centre (CCD), Colombian Ministry of Sport (Mindeporte), Bogotá, Distrito Capital Colombia
| | - David Rhodes
- Institute of Coaching and Performance, School of Sport and Health Sciences, University of Central Lancashire, Fylde Road, Preston, PR1 2HE UK
| | - Christopher Carling
- Present Address: FFF Research Centre, French Football Federation, Clairefontaine National Football Centre, Clairefontaine-en-Yvelines, France
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport (INSEP), Paris, France
| | - John Kiely
- Physical Education and Sports Science Department, University of Limerick, Limerick, Ireland
| |
Collapse
|
4
|
Deceleration Training in Team Sports: Another Potential 'Vaccine' for Sports-Related Injury? Sports Med 2021; 52:1-12. [PMID: 34716561 PMCID: PMC8761154 DOI: 10.1007/s40279-021-01583-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2021] [Indexed: 12/15/2022]
Abstract
High-intensity horizontal decelerations occur frequently in team sports and are typically performed to facilitate a reduction in momentum preceding a change of direction manoeuvre or following a sprinting action. The mechanical underpinnings of horizontal deceleration are unique compared to other high-intensity locomotive patterns (e.g., acceleration, maximal sprinting speed), and are characterised by a ground reaction force profile of high impact peaks and loading rates. The high mechanical loading conditions observed when performing rapid horizontal decelerations can lead to tissue damage and neuromuscular fatigue, which may diminish co-ordinative proficiency and an individual’s ability to skilfully dissipate braking loads. Furthermore, repetitive long-term deceleration loading cycles if not managed appropriately may propagate damage accumulation and offer an explanation for chronic aetiological consequences of the ‘mechanical fatigue failure’ phenomenon. Training strategies should look to enhance an athlete’s ability to skilfully dissipate braking loads, develop mechanically robust musculoskeletal structures, and ensure frequent high-intensity horizontal deceleration exposure in order to accustom individuals to the potentially damaging effects of intense decelerations that athletes will frequently perform in competition. Given the apparent importance of horizontal decelerations, in this Current Opinion article we provide considerations for sport science and medicine practitioners around the assessment, training and monitoring of horizontal deceleration. We feel these considerations could lead to new developments in injury-mitigation and physical development strategies in team sports.
Collapse
|
5
|
Vassallo C, Kilduff LP, Cummins C, Murphy A, Gray A, Waldron M. A new energetics model for the assessment of the power-duration relationship during over-ground running. Eur J Sport Sci 2021; 22:1211-1221. [PMID: 33993836 DOI: 10.1080/17461391.2021.1931463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We evaluated the reliability of an over-ground running three-minute all-out test (3MT) and compared this to traditional multiple-visit testing to determine the critical speed (CS) and distance > CS (D´). Using a novel energetics model during the 3MT, critical power (CP) and work > CP (W´) were also evaluated for reliability and compared to the multiple-visit tests. Over-ground running speed was measured using Global Positioning Systems during fixed-speed trials on a 400 m track to exhaustion, at four intensities corresponding to: (i) maximal oxygen uptake (V˙O2max) (Vmax), (ii) 110% V˙O2max(110%Vmax), (iii) Δ70% (i.e. 70% of the difference between gas exchange threshold and Vmax) and (iv) Δ85%. The participants subsequently performed the 3MT across two days to determine its reliability. There were no differences between the multiple-visit testing and the 3MT for CS (P = 0.328) and D´ (P = 0.919); however, CP (P = 0.02) and W´ (P < 0.001) were higher in the 3MT. The reliability of the 3MT was stable (P > 0.05) between trials for all variables, with coefficient of variation ranging from 2.0-8.1%. The current over-ground energetics model can reliably estimate CP and W´ based on GPS speed data during the 3MT, which supports its use for most athletic training and monitoring purposes. The reliability of the over-ground running 3MT for power- and speed-related indices was sufficient to detect typical training adaptations; however, it may overestimate CP (∼ 25 W) and W´ (∼ 7 kJ) compared to multiple-visit tests.
Collapse
Affiliation(s)
| | - Liam P Kilduff
- A-STEM, College of Engineering, Swansea University, Swansea, UK.,Welsh Institute of Performance Science, Swansea University, Swansea, UK
| | - Cloe Cummins
- School of Science and Technology, University of New England, Australia.,Carnegie Applied Rugby Research (CARR) centre, Institute for Sport Physical Activity and Leisure, Leeds Beckett University, Leeds, United Kingdom.,National Rugby League, Australia
| | - Aron Murphy
- School of Science and Technology, University of New England, Australia
| | - Adrian Gray
- School of Science and Technology, University of New England, Australia
| | - Mark Waldron
- A-STEM, College of Engineering, Swansea University, Swansea, UK.,School of Science and Technology, University of New England, Australia.,Welsh Institute of Performance Science, Swansea University, Swansea, UK
| |
Collapse
|
6
|
Schickhofer L, Hanson H. Aerodynamic effects and performance improvements of running in drafting formations. J Biomech 2021; 122:110457. [PMID: 33933863 DOI: 10.1016/j.jbiomech.2021.110457] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
Drafting as a process to reduce drag and to benefit from the presence of other competitors is applied in various sports with several recent examples of competitive running in formations. In this study, the aerodynamics of a realistic model of a female runner is calculated by computational fluid dynamics (CFD) simulations at four running speeds of 15 km h-1, 18 km h-1, 21 km h-1, and 36 km h-1. Aerodynamic power fractions of the total energy expenditure are found to be in the range of 2.6%-8.5%. Additionally, four exemplary formations are analysed with respect to their drafting potential and resulting drag values are compared for the main runner and her pacers. The best of the formations achieves a total drag reduction on the main runner of 75.6%. Moreover, there are large variations in the drag reduction between the considered formations of up to 42% with respect to the baseline single-runner case. We conclude that major drag reduction of more than 70% can already be achieved with fairly simple formations, while certain factors, such as runners on the sides, can have a detrimental effect on drag reduction due to local acceleration of the passing flow. Using an empirical model for mechanical power output during running, gains of metabolic power and performance predictions are evaluated for all considered formations. Improvements in running economy are up to 3.5% for the best formation, leading to velocity gains of 2.3%. This translates to 154 s (≈2.6 min) saved over a marathon distance. Consequently, direct conclusions are drawn from the obtained data for ideal drafting of long-distance running in highly packed formations.
Collapse
|