1
|
García-Montero C, Fraile-Martinez O, Rodriguez-Martín S, Funes Moñux RM, Saz JV, Bravo C, De Leon-Luis JA, Ruiz-Minaya M, Pekarek L, Saez MA, García-Lledo A, Alvarez-Mon M, Bujan J, García-Honduvilla N, Ortega MA. Irregular Expression of Cellular Stress Response Markers in the Placenta of Women with Chronic Venous Disease. Antioxidants (Basel) 2022; 11:2277. [PMID: 36421463 PMCID: PMC9687130 DOI: 10.3390/antiox11112277] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 10/12/2023] Open
Abstract
Pregnancy comprises a period in a woman's life in which the circulatory system is subjected to hemodynamical and biochemical changes. During this period, while restructuring blood vessels and exchanging maternal-fetal products there is an increased risk of developing chronic venous disease (CVD), which may have an echo in life after childbirth for both mother and child. Previously, we investigated that pregnancy-associated CVD involves changes in placental architecture at angiogenesis, lymphangiogenesis and villi morphology compared with healthy controls (HC) with no history of CVD. We aimed to more deeply investigate the oxidative stress response in placenta from women with CVD versus HC through several markers (NRF2, KEAP1, CUL3, GSK-3β). An observational, analytical, and prospective cohort study was conducted on 114 women in their third trimester of pregnancy (32 weeks). A total of 62 participants were clinically diagnosed with CVD. In parallel, 52 controls with no history of CVD (HC) were studied. Gene and protein expressions of NRF2, KEAP1, CUL3, GSK-3β were analyzed by real-time polymerase chain reaction (RT-qPCR) and immunohistochemistry. Nrf2 gene and protein expression was significantly greater in placental villi of women with CVD, while Keap1, CUL-3 and GSK-3β gene and protein expressions were significantly lower. Our results defined an aberrant gene and protein expression of Nrf2 and some of their main regulators Keap1, CUL-3 and GSK-3 β in the placenta of women with CVD, which could be an indicator of an oxidative environment observed in this tissue.
Collapse
Affiliation(s)
- Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Sonia Rodriguez-Martín
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Service of Pediatric, Hospital Universitario Principe de Asturias, 28801 Alcala de Henares, Spain
| | - Rosa M. Funes Moñux
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Service of Pediatric, Hospital Universitario Principe de Asturias, 28801 Alcala de Henares, Spain
| | - Jose V. Saz
- Department of Biomedicine and Biotechnology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Coral Bravo
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Juan A. De Leon-Luis
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - María Ruiz-Minaya
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence—UAH Madrid, 28801 Alcala de Henares, Spain
| | - Alberto García-Lledo
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Cardiology Service, University Hospital Príncipe de Asturias, 28806 Alcala de Henares, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Príncipe de Asturias, CIBEREHD, 28806 Alcala de Henares, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| |
Collapse
|
2
|
Thapa J, Yoshiiri G, Ito K, Okubo T, Nakamura S, Furuta Y, Higashi H, Yamaguchi H. Chlamydia trachomatis Requires Functional Host-Cell Mitochondria and NADPH Oxidase 4/p38MAPK Signaling for Growth in Normoxia. Front Cell Infect Microbiol 2022; 12:902492. [PMID: 35719337 PMCID: PMC9199516 DOI: 10.3389/fcimb.2022.902492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Chlamydia trachomatis (Ct) is an intracellular energy-parasitic bacterium that requires ATP derived from infected cells for its growth. Meanwhile, depending on the O2 concentration, the host cells change their mode of ATP production between oxidative phosphorylation in mitochondria (Mt) and glycolysis; this change depends on signaling via reactive oxygen species (ROS) produced by NADPH oxidases (NOXs) as well as Mt. It has been proposed that Ct correspondingly switches its source of acquisition of ATP between host-cell Mt and glycolysis, but this has not been verified experimentally. In the present study, we assessed the roles of host-cell NOXs and Mt in the intracellular growth of CtL2 (L2 434/Bu) under normoxia (21% O2) and hypoxia (2% O2) by using several inhibitors of NOXs (or the downstream molecule) and Mt-dysfunctional (Mtd) HEp-2 cells. Under normoxia, diphenyleneiodonium, an inhibitor of ROS diffusion, abolished the growth of CtL2 and other Chlamydiae (CtD and C. pneumoniae). Both ML171 (a pan-NOX inhibitor) and GLX351322 (a NOX4-specific inhibitor) impaired the growth of CtL2 under normoxia, but not hypoxia. NOX4-knockdown cells diminished the bacterial growth. SB203580, an inhibitor of the NOX4-downstream molecule p38MAPK, also inhibited the growth of CtL2 under normoxia but not hypoxia. Furthermore, CtL2 failed to grow in Mtd cells under normoxia, but no effect was observed under hypoxia. We conclude that under normoxia, Ct requires functional Mt in its host cells as an ATP source, and that this process requires NOX4/p38MAPK signaling in the host cells. In contrast to hypoxia, crosstalk between NOX4 and Mt via p38MAPK may be crucial for the growth of Ct under normoxia.
Collapse
Affiliation(s)
- Jeewan Thapa
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Gen Yoshiiri
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Koki Ito
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Torahiko Okubo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Shinji Nakamura
- Laboratory of Morphology and Image Analysis, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshikazu Furuta
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hideaki Higashi
- Division of Infection and Immunity, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hiroyuki Yamaguchi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
3
|
Tantengco OAG, Richardson L, Lee A, Kammala A, Silva MDC, Shahin H, Sheller-Miller S, Menon R. Histocompatibility Antigen, Class I, G (HLA-G)'s Role during Pregnancy and Parturition: A Systematic Review of the Literature. Life (Basel) 2021; 11:life11101061. [PMID: 34685432 PMCID: PMC8537334 DOI: 10.3390/life11101061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/18/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
Introduction: Immune homeostasis of the intrauterine cavity is vital for pregnancy maintenance. At term or preterm, fetal and maternal tissue inflammation contributes to the onset of labor. Though multiple immune-modulating molecules are known, human leukocyte antigen (HLA)-G is unique to gestational tissues and contributes to maternal–fetal immune tolerance. Several reports on HLA-G’s role exist; however, ambiguity exists regarding its functional contributions during pregnancy and parturition. To fill these knowledge gaps, a systematic review (SR) of the literature was conducted to better understand the expression, localization, function, and regulation of HLA-G during pregnancy and parturition. Methods: A SR of the literature on HLA-G expression and function reported in reproductive tissues during pregnancy, published between 1976–2020 in English, using three electronic databases (SCOPE, Medline, and ClinicalTrials.gov) was conducted. The selection of studies, data extraction, and quality assessment were performed in duplicate by two independent reviewers. Manuscripts were separated into three categories: (1) expression and localization of HLA-G, (2) regulators of HLA-G, and (3) the mechanistic roles of HAL-G. Data were extracted, analyzed, and summarized. Results: The literature search yielded 2554 citations, 117 of which were selected for full-text evaluation, and 115 were included for the final review based on our inclusion/exclusion criteria. HLA-G expression and function were mostly studied in placental tissue and/or cells and peripheral blood immune cells, while only 13% of the studies reported data on amniotic fluid/cord blood and fetal membranes. Measurements of soluble and membranous HLA-G were determined mostly by RNA-based methods and protein by immunostaining, Western blot, or flow cytometric analyses. HLA-G was reported to regulate inflammation and inhibit immune-cell-mediated cytotoxicity and trophoblast invasion. Clinically, downregulation of HLA-G is reported to be associated with poor placentation in preeclampsia and immune cell infiltration during ascending infection. Conclusions: This SR identified several reports supporting the hypothesized role of immune regulation in gestational tissues during pregnancy. A lack of rigor and reproducibility in the experimental approaches and models in several reports make it difficult to fully elucidate the mechanisms of action of HLA-G in immune tolerance during pregnancy.
Collapse
Affiliation(s)
- Ourlad Alzeus G. Tantengco
- Division of Basic and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77551, USA; (O.A.G.T.); (L.R.); (A.L.); (A.K.); (M.d.C.S.); (H.S.); (S.S.-M.)
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila 1101, Philippines
| | - Lauren Richardson
- Division of Basic and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77551, USA; (O.A.G.T.); (L.R.); (A.L.); (A.K.); (M.d.C.S.); (H.S.); (S.S.-M.)
| | - Alan Lee
- Division of Basic and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77551, USA; (O.A.G.T.); (L.R.); (A.L.); (A.K.); (M.d.C.S.); (H.S.); (S.S.-M.)
| | - Ananthkumar Kammala
- Division of Basic and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77551, USA; (O.A.G.T.); (L.R.); (A.L.); (A.K.); (M.d.C.S.); (H.S.); (S.S.-M.)
| | - Mariana de Castro Silva
- Division of Basic and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77551, USA; (O.A.G.T.); (L.R.); (A.L.); (A.K.); (M.d.C.S.); (H.S.); (S.S.-M.)
- Department of Pathology, Botucatu Medical School, Universidade Estadual Paulista, UNESP, Botucatu 18618-687, São Paulo, Brazil
| | - Hend Shahin
- Division of Basic and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77551, USA; (O.A.G.T.); (L.R.); (A.L.); (A.K.); (M.d.C.S.); (H.S.); (S.S.-M.)
| | - Samantha Sheller-Miller
- Division of Basic and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77551, USA; (O.A.G.T.); (L.R.); (A.L.); (A.K.); (M.d.C.S.); (H.S.); (S.S.-M.)
| | - Ramkumar Menon
- Division of Basic and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77551, USA; (O.A.G.T.); (L.R.); (A.L.); (A.K.); (M.d.C.S.); (H.S.); (S.S.-M.)
- Correspondence:
| |
Collapse
|
4
|
Lavu N, Richardson L, Radnaa E, Kechichian T, Urrabaz-Garza R, Sheller-Miller S, Bonney E, Menon R. Oxidative stress-induced downregulation of glycogen synthase kinase 3 beta in fetal membranes promotes cellular senescence†. Biol Reprod 2020; 101:1018-1030. [PMID: 31292604 DOI: 10.1093/biolre/ioz119] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/30/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Oxidative stress (OS)-induced stress signaler p38 mitogen-activated protein kinase (p38MAPK) activation and fetal membrane senescence are associated with parturition. This study determined changes in glycogen synthase kinase 3 beta (GSK3β) and its regulation by p38MAPK in effecting senescence to further delineate the molecular mechanism involved in senescence. METHODS Primary human amnion epithelial cells and amnion mesenchymal cells were treated with cigarette smoke extract (CSE, OS inducer). Expression of total and phosphorylated GSK3β and p38MAPK, and that of GSK3β's downstream targets: beta-catenin (β-Cat) and nuclear factor erythroid 2-related factor 2 (Nrf2) (western blot analysis), cell cycle regulation and senescence (flow cytometry) were determined. The specificity of GSK3β and p38MAPK's mechanistic role was tested by co-treating cells with their respective inhibitors, CHIR99021 and SB203580. Exosomal secretion of β-Cat from OS-induced cells was confirmed by immunofluorescence confocal microscopy and western blot. RESULTS OS induced by CSE resulted in phosphorylation of GSK3β (inactivation) and p38MAPK (activation) that was associated with cell cycle arrest and senescence. Inhibitors to GSK3β and p38MAPK verified their roles. Glycogen synthase kinase 3 beta inactivation was associated with nuclear translocation of antioxidant Nrf2 and exosomal secretion of β-Cat. CONCLUSIONS OS-induced P-p38MAPK activation is associated with functional downregulation of GSK3β and arrest of cell cycle progression and senescence of amnion cells. Lack of nuclear translocation of β-Cat and its excretion via exosomes further supports the postulation that GSK3β down-regulation by p38MAPK may stop cell proliferation preceding cell senescence. A better understanding of molecular mechanisms of senescence will help develop therapeutic strategies to prevent preterm birth.
Collapse
Affiliation(s)
- Narmada Lavu
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA.,Department of Neuroscience, Cell Biology & Anatomy, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Lauren Richardson
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA.,Department of Neuroscience, Cell Biology & Anatomy, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Enkhtuya Radnaa
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Talar Kechichian
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Rheanna Urrabaz-Garza
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Samantha Sheller-Miller
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Elizabeth Bonney
- Department of Obstetrics and Gynecology, University of Vermont, Burlington, Vermont, USA
| | - Ramkumar Menon
- Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
5
|
Kohlmeier A, Sison CAM, Yilmaz BD, Coon V JS, Dyson MT, Bulun SE. GATA2 and Progesterone Receptor Interaction in Endometrial Stromal Cells Undergoing Decidualization. Endocrinology 2020; 161:5825448. [PMID: 32335672 PMCID: PMC7899565 DOI: 10.1210/endocr/bqaa070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022]
Abstract
The transcription factor GATA2 is important for endometrial stromal cell decidualization in early pregnancy. Progesterone receptor (PGR) is also critical during decidualization but its interaction with GATA2 in regulating genes and pathways necessary for decidualization in human endometrium are unclear. RNA-sequencing (RNA-seq) was performed to compare gene expression profiles (n = 3), and chromatin immunoprecipitation followed by sequencing (ChIP-seq) using an antibody against GATA2 (n = 2) was performed to examine binding to target genes in human endometrial stromal cells undergoing in vitro decidualization (IVD including estrogen, progestin, and 3',5'-cyclic AMP analogue) or vehicle treatment. We identified 1232 differentially expressed genes (DEGs) in IVD vs vehicle. GATA2 cistrome in IVD-treated cells was enriched with motifs for GATA, ATF, and JUN, and gene ontology analysis of GATA2 cistrome revealed pathways that regulate cholesterol storage, p38 mitogen-activated protein kinase, and the c-Jun N-terminal kinase cascades. Integration of RNA-seq and ChIP-seq data revealed that the PGR motif is highly enriched at GATA2 binding regions surrounding upregulated genes in IVD-treated cells. The integration of a mined public PGR cistrome in IVD-treated human endometrial cells with our GATA2 cistrome showed that GATA2 binding was significantly enhanced at PGR-binding regions in IVD vs vehicle. Interrogating 2 separate ChIP-seq data sets together with RNA-seq revealed integration of GATA2 and PGR action to coregulate biologic processes during decidualization of human endometrial stromal cells, specifically via WNT activation and stem cell differentiation pathways. These findings reveal the key pathways that are coactivated by GATA2 and PGR that may be therapeutic targets for supporting implantation and early pregnancy.
Collapse
Affiliation(s)
- Amanda Kohlmeier
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, US
- Correspondence: Serdar E. Bulun, MD, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, 250 East Superior Street, Prentice 3-2306, Chicago, IL 60611. E-mail:
| | - Christia Angela M Sison
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, US
| | - Bahar D Yilmaz
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, US
| | - John S Coon V
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, US
| | - Matthew T Dyson
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, US
| | - Serdar E Bulun
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, US
| |
Collapse
|
6
|
Lavu N, Sheller-Miller S, Kechichian T, Cayenne S, Bonney EA, Menon R. Changes in mediators of pro-cell growth, senescence, and inflammation during murine gestation. Am J Reprod Immunol 2020; 83:e13214. [PMID: 31814178 DOI: 10.1111/aji.13214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/08/2019] [Accepted: 12/05/2019] [Indexed: 12/27/2022] Open
Abstract
PROBLEM Senescence of the fetal membranes and senescence-associated inflammation have been associated with parturition at term and pre-term in both mice and humans. Using a pregnant mouse model, we determined changes in multiple molecular signalers contributing to senescence and inflammation associated with parturition. METHOD OF STUDY Fetal membranes were collected from timed-pregnant CD-1 mice on gestation days (E) 13, 15, 17, 18, and 19. Immunohistochemistry (IHC) localized pro-cell growth factors glycogen synthase kinase 3β (GSK3β) and β-catenin. Gestational age-associated changes in pro-cell growth vs senescence mediators (p38 mitogen-activated protein kinase [p38MAPK]), prooxidants (heme oxygenase-1 [HO-1], peroxisome proliferator-activated receptor γ [PPARγ]), and pro- and anti-inflammatory cytokines (IL-6, IL-8, IL-10, and IL-1β) were determined by Western blots and Luminex assays. RESULTS Fetal membrane expressions of phosphorylated forms of GSK3β (inactivation) and p38MAPK (activation) increased, while β-catenin expression decreased, as gestation progressed. Antioxidant HO-1 expression decreased while PPARγ increased toward term gestation. IL-6 and IL-8 concentrations were highest on E19 (day of delivery), while IL-10 and IL-1β concentrations were highest on E15. CONCLUSION Mouse fetal membranes showed a progressive senescence marker increase coincided with downregulation of cell growth factors. Development of senescence is associated with inflammation. Senescence-associated changes are natural and physiologic and indicative of fetal membranes' readiness for parturition.
Collapse
Affiliation(s)
- Narmada Lavu
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.,Department of Neuroscience, Cell Biology & Anatomy, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Samantha Sheller-Miller
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Talar Kechichian
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | | | - Elizabeth A Bonney
- Department of Obstetrics and Gynecology, University of Vermont, Burlington, VT, USA
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|