1
|
Díaz M, Quesada-López T, Villarroya F, Casano P, López-Bermejo A, de Zegher F, Ibáñez L. The Proteome of Exosomes at Birth Predicts Insulin Resistance, Adrenarche and Liver Fat in Childhood. Int J Mol Sci 2025; 26:1721. [PMID: 40004184 PMCID: PMC11854951 DOI: 10.3390/ijms26041721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/13/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
It is unknown whether there are differentially expressed proteins (DEPs) in the circulating exosomes of appropriate- vs. small-for-gestational-age (AGA vs. SGA) infants, and if so, whether such DEPs relate to measures of endocrine-metabolic health and body composition in childhood. Proteomic analysis in cord-blood-derived exosomes was performed by label-free quantitative mass spectrometry in AGA (n = 20) and SGA infants (n = 20) and 91 DEPs were identified. Enrichment analysis revealed that they were related to complement and coagulation cascades, lipid metabolism, neural development, PI3K/Akt and RAS/RAF/MAPK signaling pathways, phagocytosis and focal adhesion. Protein-protein interaction (PPI) analysis identified 39 DEPs involved in the pathways enriched by the KEGG and Reactome. Those DEPs were associated with measures of adiposity and insulin resistance and with liver fat at age 7 (all p < 0.01). Multivariate linear regression analysis uncovered that two DEPs (up-regulated in SGA), namely PCYOX1 (related to adipogenesis) and HSP90AA1 (related to lipid metabolism and metabolic-dysfunction-associated steatotic liver disease progression), were independent predictors of the hepatic fat fraction at age 7 (β = 0.634; p = 0.002; R2 = 52% and β = 0.436; p = 0.009; R2 = 24%, respectively). These data suggest that DEPs at birth may predict insulin resistance, adrenarche and/or ectopic adiposity in SGA children at age 7, when an early insulin-sensitizing intervention could be considered.
Collapse
Affiliation(s)
- Marta Díaz
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Tania Quesada-López
- Department of Biomedicine, Institut de Recerca Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
- Network Biomedical Research Center of Physiopathology of Obesity and Nutrition (CIBEROBN), Health Institute Carlos III, 28029 Madrid, Spain;
| | - Francesc Villarroya
- Network Biomedical Research Center of Physiopathology of Obesity and Nutrition (CIBEROBN), Health Institute Carlos III, 28029 Madrid, Spain;
- Biochemistry and Molecular Biomedicine Department, Institute of Biomedicine, University of Barcelona, 08007 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues, 08950 Barcelona, Spain
| | - Paula Casano
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Abel López-Bermejo
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI), Faculty of Medicine, University of Girona and Dr. Josep Trueta Hospital, 17007 Girona, Spain;
| | - Francis de Zegher
- Leuven Research & Development, University of Leuven, 3000 Leuven, Belgium;
| | - Lourdes Ibáñez
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, University of Barcelona, 08950 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Margolis LB, Sadovsky Y. When Extracellular Vesicles Go Viral: A Bird's Eye View. Pathog Immun 2025; 10:140-158. [PMID: 40017586 PMCID: PMC11867185 DOI: 10.20411/pai.v10i1.787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/22/2025] [Indexed: 03/01/2025] Open
Abstract
The science of extracellular vesicles (EVs) is a rapidly growing field that spans multiple aspects of normal physiology and pathophysiology. EVs play a critical role in most basic biological processes of cell-cell communications under normal conditions and in disease. EVs have "gone viral" not only in terms of research popularity, but also in our realization that they exhibit an elaborate crosstalk with viruses, particularly with the enveloped ones, which are also extracellular vesicles that are released by cells as a part of their virulence cycle yet are replicative. Here, we highlight some of the complexities underlying EV-virus crosstalk and pathways and provide our insights on key challenges from the viewpoint of EV biology.
Collapse
Affiliation(s)
- Leonid B. Margolis
- Faculty of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
| | - Yoel Sadovsky
- Magee-Womens Research Institute, Department of OBGYN and Reproductive Sciences, Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
3
|
Winsloe C, Elhindi J, Vieira MC, Relph S, Arcus CG, Alagna A, Briley A, Johnson M, Page LM, Shennan A, Thilaganathan B, Marlow N, Lees C, Lawlor DA, Khalil A, Sandall J, Copas A, Pasupathy D. Differences in Factors Associated With Preterm and Term Stillbirth: A Secondary Cohort Analysis of the DESiGN Trial. BJOG 2025; 132:89-98. [PMID: 39291344 PMCID: PMC11612614 DOI: 10.1111/1471-0528.17951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/14/2024] [Accepted: 08/25/2024] [Indexed: 09/19/2024]
Abstract
OBJECTIVE To identify whether maternal and pregnancy characteristics associated with stillbirth differ between preterm and term stillbirth. DESIGN Secondary cohort analysis of the DESiGN RCT. SETTING Thirteen UK maternity units. POPULATION Singleton pregnant women and their babies. METHODS Multiple logistic regression was used to assess whether the 12 factors explored were associated with stillbirth. Interaction tests assessed for a difference in these associations between the preterm and term periods. MAIN OUTCOME MEASURE Stillbirth stratified by preterm (<37+0 weeks') and term (37+0-42+6 weeks') births. RESULTS A total of 195 344 pregnancies were included. Six hundred and sixty-seven were stillborn (3.4 per 1000 births), of which 431 (65%) were preterm. Significant interactions were observed for maternal age, ethnicity, IMD, BMI, parity, smoking, PAPP-A, gestational hypertension, pre-eclampsia and gestational diabetes but not for chronic hypertension and pre-existing diabetes. Stronger associations with term stillbirth were observed in women with obesity compared to BMI 18.5-24.9 kg/m2 (BMI 30.0-34.9 kg/m2 term adjusted OR 2.1 [95% CI 1.4-3.0] vs. preterm aOR 1.1 [0.8-1.7]; BMI ≥ 35.0 kg/m2 term aOR 2.2 [1.4-3.4] vs. preterm aOR 1.5 [1.2-1.8]; p-interaction < 0.01), nulliparity compared to parity 1 (term aOR 1.7 [1.1-2.7] vs. preterm aOR 1.2 [0.9-1.6]; p-interaction < 0.01) and Asian ethnicity compared with White (p-interaction < 0.01). A weaker or lack of association with term, compared to preterm, stillbirth was observed for older maternal age, smoking and pre-eclampsia. CONCLUSION Differences in association exist between mothers experiencing preterm and term stillbirth. These differences could contribute to design of timely surveillance and interventions to further mitigate the risk of stillbirth.
Collapse
Affiliation(s)
- Chivon Winsloe
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- Centre for Pragmatic Global Health Trials, Institute for Global HealthUniversity College LondonLondonUK
| | - James Elhindi
- Reproduction and Perinatal Centre, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Matias C. Vieira
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- Department of Obstetrics and Gynaecology, School of Medical SciencesUniversity of Campinas (UNICAMP)CampinasBrazil
| | - Sophie Relph
- Women's Health Division, Royal London HospitalBarts Health NHS TrustLondonUK
| | - Charles G. Arcus
- Reproduction and Perinatal Centre, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Alessandro Alagna
- London Perinatal Morbidity and Mortality Working Group (NHS)LondonUK
| | - Annette Briley
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- Caring Futures Institute Flinders University and North Adelaide Local Health NetworkAdelaideSouth AustraliaAustralia
| | - Mark Johnson
- Department of Surgery and CancerImperial College LondonLondonUK
| | - Louise M. Page
- West Middlesex University Hospital, Chelsea & Westminster Hospital NHS Foundation TrustIsleworthUK
| | - Andrew Shennan
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Baskaran Thilaganathan
- Fetal Medicine UnitSt George's University Hospitals NHS Foundation TrustLondonUK
- Molecular & Clinical Sciences Research InstituteSt George's, University of LondonLondonUK
| | - Neil Marlow
- UCL Institute for Women's Health, University College LondonLondonUK
| | - Christoph Lees
- Department of Metabolism, Digestion and ReproductionImperial College LondonLondonUK
| | - Deborah A. Lawlor
- Medical Research Council Integrative Epidemiology Unit at the University of BristolBristolUK
- Population Health Science, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Asma Khalil
- Fetal Medicine UnitSt George's University Hospitals NHS Foundation TrustLondonUK
- Molecular & Clinical Sciences Research InstituteSt George's, University of LondonLondonUK
| | - Jane Sandall
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
| | - Andrew Copas
- Centre for Pragmatic Global Health Trials, Institute for Global HealthUniversity College LondonLondonUK
| | - Dharmintra Pasupathy
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and MedicineKing's College LondonLondonUK
- Reproduction and Perinatal Centre, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | | |
Collapse
|
4
|
Than NG, Romero R, Fitzgerald W, Gudicha DW, Gomez-Lopez N, Posta M, Zhou F, Bhatti G, Meyyazhagan A, Awonuga AO, Chaiworapongsa T, Matthies D, Bryant DR, Erez O, Margolis L, Tarca AL. Proteomic Profiles of Maternal Plasma Extracellular Vesicles for Prediction of Preeclampsia. Am J Reprod Immunol 2024; 92:e13928. [PMID: 39347565 DOI: 10.1111/aji.13928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 10/01/2024] Open
Abstract
PROBLEM Preeclampsia is a heterogeneous syndrome of diverse etiologies and molecular pathways leading to distinct clinical subtypes. Herein, we aimed to characterize the extracellular vesicle (EV)-associated and soluble fractions of the maternal plasma proteome in patients with preeclampsia and to assess their value for disease prediction. METHOD OF STUDY This case-control study included 24 women with term preeclampsia, 23 women with preterm preeclampsia, and 94 healthy pregnant controls. Blood samples were collected from cases on average 7 weeks before the diagnosis of preeclampsia and were matched to control samples. Soluble and EV fractions were separated from maternal plasma; EVs were confirmed by cryo-EM, NanoSight, and flow cytometry; and 82 proteins were analyzed with bead-based, multiplexed immunoassays. Quantile regression analysis and random forest models were implemented to evaluate protein concentration differences and their predictive accuracy. Preeclampsia subgroups defined by molecular profiles were identified by hierarchical cluster analysis. Significance was set at p < 0.05 or false discovery rate-adjusted q < 0.1. RESULTS In preterm preeclampsia, PlGF, PTX3, and VEGFR-1 displayed differential abundance in both soluble and EV fractions, whereas angiogenin, CD40L, endoglin, galectin-1, IL-27, CCL19, and TIMP1 were changed only in the soluble fraction (q < 0.1). The direction of changes in the EV fraction was consistent with that in the soluble fraction for nine proteins. In term preeclampsia, CCL3 had increased abundance in both fractions (q < 0.1). The combined EV and soluble fraction proteomic profiles predicted preterm and term preeclampsia with an AUC of 78% (95% CI, 66%-90%) and 68% (95% CI, 56%-80%), respectively. Three clusters of preeclampsia featuring distinct clinical characteristics and placental pathology were identified based on combined protein data. CONCLUSIONS Our findings reveal distinct alterations of the maternal EV-associated and soluble plasma proteome in preterm and term preeclampsia and identify molecular subgroups of patients with distinct clinical and placental histopathologic features.
Collapse
Affiliation(s)
- Nándor Gábor Than
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
| | - Wendy Fitzgerald
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Dereje W Gudicha
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Nardhy Gomez-Lopez
- Department of Obstetrics and Gynecology & Department of Pathology and Immunology, Washington University, St. Louis, Missouri, USA
| | - Máté Posta
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Semmelweis University Doctoral School, Budapest, Hungary
| | - Fei Zhou
- Unit on Structural Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Gaurav Bhatti
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Arun Meyyazhagan
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Awoniyi O Awonuga
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Tinnakorn Chaiworapongsa
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Doreen Matthies
- Unit on Structural Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - David R Bryant
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Offer Erez
- Department of Obstetrics and Gynecology, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Leonid Margolis
- Faculty of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
| | - Adi L Tarca
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, USA
| |
Collapse
|
5
|
Gál L, Fóthi Á, Orosz G, Nagy S, Than NG, Orbán TI. Exosomal small RNA profiling in first-trimester maternal blood explores early molecular pathways of preterm preeclampsia. Front Immunol 2024; 15:1321191. [PMID: 38455065 PMCID: PMC10917917 DOI: 10.3389/fimmu.2024.1321191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/25/2024] [Indexed: 03/09/2024] Open
Abstract
Introduction Preeclampsia (PE) is a severe obstetrical syndrome characterized by new-onset hypertension and proteinuria and it is often associated with fetal intrauterine growth restriction (IUGR). PE leads to long-term health complications, so early diagnosis would be crucial for timely prevention. There are multiple etiologies and subtypes of PE, and this heterogeneity has hindered accurate identification in the presymptomatic phase. Recent investigations have pointed to the potential role of small regulatory RNAs in PE, and these species, which travel in extracellular vesicles (EVs) in the circulation, have raised the possibility of non-invasive diagnostics. The aim of this study was to investigate the behavior of exosomal regulatory small RNAs in the most severe subtype of PE with IUGR. Methods We isolated exosomal EVs from first-trimester peripheral blood plasma samples of women who later developed preterm PE with IUGR (n=6) and gestational age-matched healthy controls (n=14). The small RNA content of EVs and their differential expression were determined by next-generation sequencing and further validated by quantitative real-time PCR. We also applied the rigorous exceRpt bioinformatics pipeline for small RNA identification, followed by target verification and Gene Ontology analysis. Results Overall, >2700 small RNAs were identified in all samples and, of interest, the majority belonged to the RNA interference (RNAi) pathways. Among the RNAi species, 16 differentially expressed microRNAs were up-regulated in PE, whereas up-regulated and down-regulated members were equally found among the six identified Piwi-associated RNAs. Gene ontology analysis of the predicted small RNA targets showed enrichment of genes in pathways related to immune processes involved in decidualization, placentation and embryonic development, indicating that dysregulation of the induced small RNAs is connected to the impairment of immune pathways in preeclampsia development. Finally, the subsequent validation experiments revealed that the hsa_piR_016658 piRNA is a promising biomarker candidate for preterm PE associated with IUGR. Discussion Our rigorously designed study in a homogeneous group of patients unraveled small RNAs in circulating maternal exosomes that act on physiological pathways dysregulated in preterm PE with IUGR. Therefore, our small RNA hits are not only suitable biomarker candidates, but the revealed biological pathways may further inform us about the complex pathology of this severe PE subtype.
Collapse
Affiliation(s)
- Luca Gál
- Gene Regulation Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ábel Fóthi
- Gene Regulation Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Gergő Orosz
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Sándor Nagy
- Department of Obstetrics and Gynecology, Petz Aladár University Teaching Hospital, Győr, Hungary
- Faculty of Health and Sport Sciences, Széchenyi István University, Győr, Hungary
| | - Nándor Gábor Than
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
- Genesis Theranostix Group, Budapest, Hungary
| | - Tamás I. Orbán
- Gene Regulation Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|