1
|
Tan YH, Poong SW, Beardall J, Phang SM, Lim PE. Metabolomic and physiological analyses of two picochlorophytes from distinct oceanic latitudes under future ocean acidification and warming. MARINE ENVIRONMENTAL RESEARCH 2025; 208:107095. [PMID: 40163968 DOI: 10.1016/j.marenvres.2025.107095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/27/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025]
Abstract
Phytoplankton are cosmopolitan marine photosynthetic organisms that are vital to biogeochemical cycles and marine ecosystems. The current rise in atmospheric CO2 and surface ocean temperatures are poised to disrupt the ecological niches of phytoplankton. Picochlorophytes, a broad taxon of small green eukaryotic phytoplankton, have been shown to perform well under future rising oceanic CO2 and temperature scenarios. This study investigates the acclimation responses of cosmopolitan picochlorophytes from the Chlorella-lineage under high CO2 (1000 p.p.m.) and a rise of 4 °C (8 °C - polar picochlorophyte; 32 °C, tropical picochlorophyte). In order to determine how the future ocean warming and acidification might affect picochlorophytes, a polar strain of Chlorella and a tropical Parachlorella were selected, and their physiology and GCMS-based metabolomics were investigated. Growth rate and cellular dimensions (diameter, volume, and surface area) of Chlorella significantly increased in all environmental future scenarios compared to Parachlorella. Photosynthetic parameters of the picochlorophytes studied showed acclimation, with high temperature and high CO2 triggering the adaptation of Fv/Fm, NPQmax, and Ek of Chlorella and Parachlorella, respectively. High CO2 induced the most changes in the Chlorella metabolome, altering the levels of metabolites related to amino acids and their derivatives, glutathione production, carbohydrates, and photochemical quenching. Combined high CO2/temperature altered Parachlorella's metabolome, though with a small number of biomarkers detected. This study provided evidence to support the hypothesis that picochlorophytes could thrive in a more acidified and warmer ocean.
Collapse
Affiliation(s)
- Yong-Hao Tan
- Institute of Ocean & Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia; Office of Postgraduate Studies, UCSI University, Kuala Lumpur, Malaysia
| | - Sze-Wan Poong
- Institute of Ocean & Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia.
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, Australia
| | - Siew-Moi Phang
- Institute of Ocean & Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia; Office of Postgraduate Studies, UCSI University, Kuala Lumpur, Malaysia; Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Phaik-Eem Lim
- Institute of Ocean & Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
Darienko T, Pröschold T. Prasiolopsis wulf-kochii (Prasiolales, Trebouxiophyceae), a New Species Occurring in Hairs of the Sloth Bradypus tridactylus. PLANTS (BASEL, SWITZERLAND) 2024; 13:2405. [PMID: 39273889 PMCID: PMC11397384 DOI: 10.3390/plants13172405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024]
Abstract
The monotypic genus Prasiolopsis has been known for a long time, but is often overlooked because of difficulties in identification and the morphological variability between uniseriate filaments and cell packages forming pseudoparenchymatic thalli depending on age. We investigated a strain (SAG 84.81) originally denoted as Trichophilus welckeri, which was isolated from the hairs of the sloth Bradypus tridactylus, and compared it with other available strains of Prasiolopsis and of the sister genus Pseudomarvania. Our investigations clearly showed that this strain differed in morphology, especially of the chloroplast, from those originally described for Trichophilus. Phylogenetic analyses of the SSU and ITS rDNA sequences revealed that the strain SAG 84.81 is sister to several strains of P. ramosa within the Prasiola clade (Trebouxiophyceae). Using the ITS-2/CBC approach, we clearly demonstrated that this strain represented a new species of Prasiolopsis, which we proposed here as P. wulf-kochii. In addition, we evaluated the ITS-2/CBC approach by comparing it with the two species of Pseudomarvania. All investigated strains showed CBCs and HCBCs, which support their species delimitation. The sequencing data of Trichophilus welckeri available in GenBank were phylogenetically re-evaluated by including all representatives of the Ulotrichales (Ulvophyceae). Our analyses showed that these sequences formed their own lineage within this order.
Collapse
Affiliation(s)
- Tatyana Darienko
- Research Department for Limnology, Leopold-Franzens-University of Innsbruck, A-5310 Mondsee, Austria
- Institute for Microbiology and Genetics, Department of Applied Bioinformatics, Georg-August-University of Göttingen, D-37077 Göttingen, Germany
| | - Thomas Pröschold
- Research Department for Limnology, Leopold-Franzens-University of Innsbruck, A-5310 Mondsee, Austria
| |
Collapse
|
3
|
Darienko T, Rad-Menéndez C, Pröschold T. The New Genus Caulinema Revealed New Insights into the Generic Relationship of the Order Ulotrichales (Ulvophyceae, Chlorophyta). Microorganisms 2024; 12:1604. [PMID: 39203446 PMCID: PMC11356126 DOI: 10.3390/microorganisms12081604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
Traditionally, the order Ulotrichales comprised green algae of an unbranched, uniseriate, filamentous morphology. However, since the establishment of ultrastructural features, the circumscription of this order has dramatically changed. Some genera and species have been excluded from this order and others with different morphologies (sarcinoid, branched filaments or even parenchymatous taxa) have been included. Phylogenetic analyses have confirmed the monophyly of this order, but its differentiation from the Ulvales and Acrosiphoniales remains difficult because of the lack of synapomorphies at every level (morphology, molecular signatures). To demonstrate the difficulties of placement into genera and orders, we investigated two sarcinoid taxa with the absence of zoospore formation. SSU and ITS rDNA tree topology and the ITS-2/CBC approach revealed that both strains SAG 2661 and CCAP 312/1 belong to Ulosarcina terrestrica and the newly erected genus Caulinema, respectively. The species conception using this approach was evaluated by sequencing the plastid-coding gene tufA, a commonly used barcode marker for green algae. All three molecular markers resulted in similar topologies at the generic and species levels, which is consistent with the ITS-2/CBC approach and tufA for barcoding. The reevaluation of the ultrastructural features revealed that the presence of organic scales on the surfaces of motile cells is characteristic for the order Ulotrichales and can be used for separation from the closely related orders. As a consequence of our study, we propose the new genus Caulinema for strain CCAP 312/1.
Collapse
Affiliation(s)
- Tatyana Darienko
- Research Department for Limnology, Leopold-Franzens-University of Innsbruck, A-5310 Mondsee, Austria;
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, Georg-August-University of Göttingen, D-37077 Göttingen, Germany
| | - Cecilia Rad-Menéndez
- Collection of Algae and Protozoa, Scottish Association for Marine Science, Oban PA37 1QA, UK;
| | - Thomas Pröschold
- Research Department for Limnology, Leopold-Franzens-University of Innsbruck, A-5310 Mondsee, Austria;
| |
Collapse
|
4
|
Darienko T, Pröschold T. Solotvynia, a New Coccoid Lineage among the Ulvophyceae (Chlorophyta). Microorganisms 2024; 12:868. [PMID: 38792698 PMCID: PMC11123690 DOI: 10.3390/microorganisms12050868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/06/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Coccoid Ulvophyceae are often overlooked despite their wide distribution. They occur as epiphytes on marine seaweeds or grow on stones or on shells of mussels and corals. Most of the species are not easy to identify based solely on morphology. However, they form two groups based on the flagellated cells during asexual reproduction. The biflagellated coccoids are monophyletic and represent the genus Sykidion (Sykidiales). In contrast, the quadriflagellated taxa are polyphyletic and belong to different genera and orders. The newly investigated strains NIES-1838 and NIES-1839, originally identified as Halochlorococcum, belong to the genus Chlorocystis (C. john-westii) among the order Chlorocystidales. The unidentified strain CCMP 1293 had almost an identical SSU and ITS-2 sequence to Symbiochlorum hainanense (Ignatiales) but showed morphological differences (single chloroplast, quadriflagellated zoospores) compared with the original description of this species (multiple chloroplasts, aplanospores). Surprisingly, the strain SAG 2662 (= ULVO-129), together with the published sequence of MBIC 10461, formed a new monophyletic lineage among the Ulvophyceae, which is highly supported in all of the bootstrap and Bayesian analyses and approximately unbiased tests of user-defined trees. This strain is characterized by a spherical morphology and also form quadriflagellated zoospores, have a unique ITS-2 barcode, and can tolerate a high variation of salinities. Considering our results, we emend the diagnosis of Symbiochlorum and propose the new genus Solotvynia among the new order Solotvyniales.
Collapse
Affiliation(s)
- Tatyana Darienko
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, Georg-August-University of Göttingen, D-37077 Göttingen, Germany;
- Research Department for Limnology, Leopold-Franzens-University of Innsbruck, A-5310 Mondsee, Austria
| | - Thomas Pröschold
- Research Department for Limnology, Leopold-Franzens-University of Innsbruck, A-5310 Mondsee, Austria
| |
Collapse
|
5
|
Wong EB, Kamaruddin N, Mokhtar M, Yusof N, Khairuddin RFR. Assessing sequence heterogeneity in Chlorellaceae DNA barcode markers for phylogenetic inference. J Genet Eng Biotechnol 2023; 21:104. [PMID: 37851281 PMCID: PMC10584744 DOI: 10.1186/s43141-023-00550-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Phylogenetic inference is an important approach that allows the recovery of the evolutionary history and the origin of the Chlorellaceae species. Despite the species' potential for biofuel feedstock production, their high phenotypic plasticity and similar morphological structures among the species have muddled the taxonomy and identification of the Chlorellaceae species. This study aimed to decipher Chlorellaceae DNA barcode marker heterogeneity by examining the sequence divergence and genomic properties of 18S rRNA, ITS (ITS1-5.8S rRNA-ITS2-28S rRNA), and rbcL from 655 orthologous sequences of 64 species across 31 genera in the Chlorellaceae family. The study assessed the distinct evolutionary properties of the DNA markers that may have caused the discordance between individual trees in the phylogenetic inference using the Robinson-Foulds distance and the Shimodaira-Hasegawa test. Our findings suggest that using the supermatrix approach improves the congruency between trees by reducing stochastic error and increasing the confidence of the inferred Chlorellaceae phylogenetic tree. This study also found that the phylogenies inferred through the supermatrix approach might not always be well supported by all markers. The study highlights that assessing sequence heterogeneity prior to the phylogenetic inference could allow the approach to accommodate sequence evolutionary properties and support species identification from the most congruent phylogeny, which can better represent the evolution of Chlorellaceae species.
Collapse
Affiliation(s)
- Ee Bhei Wong
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia
| | - Nurhaida Kamaruddin
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia
| | - Marina Mokhtar
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia
| | - Norjan Yusof
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia
| | - Raja Farhana R Khairuddin
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900, Tanjong Malim, Perak, Malaysia.
- Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture, and Healthcare (CRYSTAL), Universiti Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
6
|
Villanova V, Roques JAC, Forghani B, Shaikh KM, Undeland I, Spetea C. Two-phase microalgae cultivation for RAS water remediation and high-value biomass production. FRONTIERS IN PLANT SCIENCE 2023; 14:1186537. [PMID: 37377803 PMCID: PMC10292630 DOI: 10.3389/fpls.2023.1186537] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023]
Abstract
The overall goal of this study was to provide solutions to innovative microalgae-based technology for wastewater remediation in a cold-water recirculating marine aquaculture system (RAS). This is based on the novel concept of integrated aquaculture systems in which fish nutrient-rich rearing water will be used for microalgae cultivation. The produced biomass can be used as fish feed, while the cleaned water can be reused, to create a highly eco-sustainable circular economy. Here, we tested three microalgae species Nannochloropis granulata (Ng), Phaeodactylum tricornutum (Pt), and Chlorella sp (Csp) for their ability to remove nitrogen and phosphate from the RAS wastewater and simultaneously produce high-value biomass, i.e., containing amino acids (AA), carotenoids, and polyunsaturated fatty acids (PUFAs). A high yield and value of biomass were achieved for all species in a two-phase cultivation strategy: i) a first phase using a medium optimized for best growth (f/2 14x, control); ii) a second "stress" phase using the RAS wastewater to enhance the production of high-value metabolites. Ng and Pt performed best in terms of biomass yield (i.e., 5-6 g of dry weight, DW.L-1) and efficient cleaning of the RAS wastewater from nitrite, nitrate, and phosphate (i.e., 100% removal). Csp produced about 3 g L-1 of DW and reduced efficiently only nitrate, and phosphate (i.e., about 76% and 100% removal, respectively). The biomass of all strains was rich in protein (30-40 % of DW) containing all the essential AA except Methionine. The biomass of all three species was also rich in PUFAs. Finally, all tested species are excellent sources of antioxidant carotenoids, including fucoxanthin (Pt), lutein (Ng and Csp) and β-carotene (Csp). All tested species in our novel two-phase cultivation strategy thus showed great potential to treat marine RAS wastewater and provide sustainable alternatives to animal and plant proteins with extra added values.
Collapse
Affiliation(s)
- Valeria Villanova
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Jonathan Armand Charles Roques
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- SWEMARC, The Swedish Mariculture Research Center, University of Gothenburg, Gothenburg, Sweden
| | - Bita Forghani
- Department of Life Sciences-Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Kashif Mohd Shaikh
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Ingrid Undeland
- Department of Life Sciences-Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
| | - Cornelia Spetea
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
Lobb B, Shapter A, Doxey AC, Nissimov JI. Functional Profiling and Evolutionary Analysis of a Marine Microalgal Virus Pangenome. Viruses 2023; 15:v15051116. [PMID: 37243202 DOI: 10.3390/v15051116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Phycodnaviridae are large double-stranded DNA viruses, which facilitate studies of host-virus interactions and co-evolution due to their prominence in algal infection and their role in the life cycle of algal blooms. However, the genomic interpretation of these viruses is hampered by a lack of functional information, stemming from the surprising number of hypothetical genes of unknown function. It is also unclear how many of these genes are widely shared within the clade. Using one of the most extensively characterized genera, Coccolithovirus, as a case study, we combined pangenome analysis, multiple functional annotation tools, AlphaFold structural modeling, and literature analysis to compare the core and accessory pangenome and assess support for novel functional predictions. We determined that the Coccolithovirus pangenome shares 30% of its genes with all 14 strains, making up the core. Notably, 34% of its genes were found in at most three strains. Core genes were enriched in early expression based on a transcriptomic dataset of Coccolithovirus EhV-201 algal infection, were more likely to be similar to host proteins than the non-core set, and were more likely to be involved in vital functions such as replication, recombination, and repair. In addition, we generated and collated annotations for the EhV representative EhV-86 from 12 different annotation sources, building up information for 142 previously hypothetical and putative membrane proteins. AlphaFold was further able to predict structures for 204 EhV-86 proteins with a modelling accuracy of good-high. These functional clues, combined with generated AlphaFold structures, provide a foundational framework for the future characterization of this model genus (and other giant viruses) and a further look into the evolution of the Coccolithovirus proteome.
Collapse
Affiliation(s)
- Briallen Lobb
- Department of Biology, University of Waterloo, 200 University Ave. West., Waterloo, ON N2L 3G1, Canada
| | - Anson Shapter
- Department of Biology, University of Waterloo, 200 University Ave. West., Waterloo, ON N2L 3G1, Canada
| | - Andrew C Doxey
- Department of Biology, University of Waterloo, 200 University Ave. West., Waterloo, ON N2L 3G1, Canada
| | - Jozef I Nissimov
- Department of Biology, University of Waterloo, 200 University Ave. West., Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
8
|
Krivina ES, Bobrovnikova LA, Temraleeva AD, Markelova AG, Gabrielyan DA, Sinetova MA. Description of Neochlorella semenenkoi gen. et. sp. nov. (Chlorophyta, Trebouxiophyceae), a Novel Chlorella-like Alga with High Biotechnological Potential. DIVERSITY 2023. [DOI: 10.3390/d15040513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Despite many publications about Chlorella-like algae, their reliable and accurate identification is still difficult due to their simplicity and high phenotypic plasticity. The molecular approach has revolutionized our understanding of the diversity of ’small green balls’, and a natural classification of this group is currently being developed. This work is aimed at providing a detailed study of the phylogenetic position, morphology, ultrastructure, and physiology of the biotechnologically remarkable Chlorella-like strain IPPAS C-1210. Based on the SSU–ITS1–5.8S–ITS2 phylogeny, genetic distances, and the presence of compensatory base changes (CBCs) in ITS1 and conserved regions of ITS2 secondary structures, we describe a new genus, Neochlorella, with IPPAS C-1210 as the authentic strain of the type species, N. semenenkoi gen. and sp. nov. In addition, we justify the reassignment of the strain C. thermophila ITBB HTA 1–65 into N. thermophila comb. nov. The distinctive ultrastructural and physiological traits of the new species are discussed.
Collapse
Affiliation(s)
- Elena S. Krivina
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Prosp. Nauki, 3, Pushchino 142290, Russia
| | - Lidia A. Bobrovnikova
- K.A. Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences, Botanicheskaya Str. 35, Moscow 127276, Russia
- Department of Agricultural Biotechnology, Hungarian University of Agriculture and Life Sciences (MATE), 2100 Godollo, Hungary
| | - Anna D. Temraleeva
- Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Prosp. Nauki, 3, Pushchino 142290, Russia
| | - Alexandra G. Markelova
- K.A. Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences, Botanicheskaya Str. 35, Moscow 127276, Russia
| | - David A. Gabrielyan
- K.A. Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences, Botanicheskaya Str. 35, Moscow 127276, Russia
| | - Maria A. Sinetova
- K.A. Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences, Botanicheskaya Str. 35, Moscow 127276, Russia
| |
Collapse
|
9
|
Tao Y, Liu Z, Zheng J, Zhou J, He D, Ma J. Microalgae production in human urine: Fundamentals, opportunities, and perspectives. Front Microbiol 2022; 13:1067782. [DOI: 10.3389/fmicb.2022.1067782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/01/2022] [Indexed: 11/21/2022] Open
Abstract
The biological treatment of source-separated human urine to produce biofuel, nutraceutical, and high-value chemicals is getting increasing attention. Especially, photoautotrophic microalgae can use human urine as media to achieve environmentally and economically viable large-scale cultivation. This review presents a comprehensive overview of the up-to-date advancements in microalgae cultivation employing urine in photobioreactors (PBRs). The standard matrices describing algal growth and nutrient removal/recovery have been summarized to provide a platform for fair comparison among different studies. Specific consideration has been given to the critical operating factors to understand how the PBRs should be maintained to achieve high efficiencies. Finally, we discuss the perspectives that emphasize the impacts of co-existing bacteria, contamination by human metabolites, and genetic engineering on the practical microalgal biomass production in urine.
Collapse
|
10
|
Spanner C, Darienko T, Filker S, Sonntag B, Pröschold T. Morphological diversity and molecular phylogeny of five Paramecium bursaria (Alveolata, Ciliophora, Oligohymenophorea) syngens and the identification of their green algal endosymbionts. Sci Rep 2022; 12:18089. [PMID: 36302793 PMCID: PMC9613978 DOI: 10.1038/s41598-022-22284-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/12/2022] [Indexed: 12/30/2022] Open
Abstract
Paramecium bursaria is a mixotrophic ciliate species, which is common in stagnant and slow-flowing, nutrient-rich waters. It is usually found living in symbiosis with zoochlorellae (green algae) of the genera Chlorella or Micractinium. We investigated P. bursaria isolates from around the world, some of which have already been extensively studied in various laboratories, but whose morphological and genetic identity has not yet been completely clarified. Phylogenetic analyses of the SSU and ITS rDNA sequences revealed five highly supported lineages, which corresponded to the syngen and most likely to the biological species assignment. These syngens R1-R5 could also be distinguished by unique synapomorphies in the secondary structures of the SSU and the ITS. Considering these synapomorphies, we could clearly assign the existing GenBank entries of P. bursaria to specific syngens. In addition, we discovered synapomorphies at amino acids of the COI gene for the identification of the syngens. Using the metadata of these entries, most syngens showed a worldwide distribution, however, the syngens R1 and R5 were only found in Europe. From morphology, the syngens did not show any significant deviations. The investigated strains had either Chlorella variabilis, Chlorella vulgaris or Micractinium conductrix as endosymbionts.
Collapse
Affiliation(s)
- Christian Spanner
- Research Department for Limnology, Mondsee, University of Innsbruck, Mondsee, Austria
| | - Tatyana Darienko
- Research Department for Limnology, Mondsee, University of Innsbruck, Mondsee, Austria
- Institute of Microbiology and Genetics, Department of Applied Bioinformatics, University of Göttingen, Göttingen, Germany
| | - Sabine Filker
- Molecular Ecology Group, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Bettina Sonntag
- Research Department for Limnology, Mondsee, University of Innsbruck, Mondsee, Austria
| | - Thomas Pröschold
- Research Department for Limnology, Mondsee, University of Innsbruck, Mondsee, Austria.
| |
Collapse
|
11
|
Ishiguro S, Roth M, Welti R, Loyd M, Thakkar R, Phillips M, Robben N, Upreti D, Nakashima A, Suzuki K, Comer J, Tamura M. A Water Extract from Chlorella sorokiniana Cell Walls Stimulates Growth of Bone Marrow Cells and Splenocytes. Nutrients 2022; 14:nu14142901. [PMID: 35889858 PMCID: PMC9322350 DOI: 10.3390/nu14142901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
A water extract derived from the isolated cell walls of Chlorella sorokiniana (C. sorokiniana, Chlorella water extract, CWE) was analyzed for the presence of lipopolysaccharide (LPS)-related material via the Limulus amebocyte lysate (LAL) assay and evaluated for its growth stimulation effect on the bone marrow cells and splenocytes in vitro cell cultures. The extract contained low levels of LPS-related material, and a mass spectrum suggested that the extract contained many components, including a low level of a lipid A precursor, a compound known as lipid X, which is known to elicit a positive response in the LAL assay. Treatment with the CWE dose- and time-dependently stimulated the growth of mouse bone marrow cells (BMCs) and splenocytes (SPLs). Treatment with the CWE also increased specific BMC subpopulations, including antigen-presenting cells (CD19+ B cells, 33D1+ dendritic cells and CD68+ macrophages), and CD4+ and CD8+ T cells, but decreased the number of LY6G+ granulocytes. Treatment with the CWE also increased cytokine mRNA associated with T cell activation, including TNFα, IFNγ, and granzyme B in human lymphoblasts. The present study indicates that the cell wall fraction of C.sorokiniana contains an LPS-like material and suggests a candidate source for the bioactivity that stimulates growth of both innate and adaptive immune cells.
Collapse
Affiliation(s)
- Susumu Ishiguro
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA; (S.I.); (M.L.); (R.T.); (M.P.); (N.R.); (D.U.); (J.C.)
| | - Mary Roth
- Division of Biology, Kansas Lipidomics Research Center, Kansas State University, Manhattan, KS 66506, USA; (M.R.); (R.W.)
| | - Ruth Welti
- Division of Biology, Kansas Lipidomics Research Center, Kansas State University, Manhattan, KS 66506, USA; (M.R.); (R.W.)
| | - Mayme Loyd
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA; (S.I.); (M.L.); (R.T.); (M.P.); (N.R.); (D.U.); (J.C.)
| | - Ravindra Thakkar
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA; (S.I.); (M.L.); (R.T.); (M.P.); (N.R.); (D.U.); (J.C.)
| | - Morgan Phillips
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA; (S.I.); (M.L.); (R.T.); (M.P.); (N.R.); (D.U.); (J.C.)
| | - Nicole Robben
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA; (S.I.); (M.L.); (R.T.); (M.P.); (N.R.); (D.U.); (J.C.)
| | - Deepa Upreti
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA; (S.I.); (M.L.); (R.T.); (M.P.); (N.R.); (D.U.); (J.C.)
| | - Ayaka Nakashima
- Euglena Co., Ltd., Minato-ku, Tokyo 108-0014, Japan; (A.N.); (K.S.)
| | - Kengo Suzuki
- Euglena Co., Ltd., Minato-ku, Tokyo 108-0014, Japan; (A.N.); (K.S.)
| | - Jeffrey Comer
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA; (S.I.); (M.L.); (R.T.); (M.P.); (N.R.); (D.U.); (J.C.)
| | - Masaaki Tamura
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA; (S.I.); (M.L.); (R.T.); (M.P.); (N.R.); (D.U.); (J.C.)
- Correspondence: ; Tel.: +1-(785)-532-4825; Fax: +1-(785)-532-4557
| |
Collapse
|
12
|
Pei H, Zhang L, Betenbaugh MJ, Jiang L, Lin X, Ma C, Yang Z, Wang X, Chen S, Lin WF. Highly efficient harvesting and lipid extraction of limnetic Chlorella sorokiniana SDEC-18 grown in seawater for microalgal biofuel production. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
13
|
Sanders CK, Hanschen ER, Biondi TC, Hovde BT, Kunde YA, Eng WL, Kwon T, Dale T. Phylogenetic analyses and reclassification of the oleaginous marine species Nannochloris sp. "desiccata" (Trebouxiophyceae, Chlorophyta), formerly Chlorella desiccata, supported by a high-quality genome assembly. JOURNAL OF PHYCOLOGY 2022; 58:436-448. [PMID: 35262191 DOI: 10.1111/jpy.13242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Microalgae are diverse, with many gaps remaining in phylogenetic and physiological understanding. Thus, studying new microalgae species increases our broader comprehension of biological diversity, and evaluation of new candidates as algal production platforms can lead to improved productivity under a variety of cultivation conditions. Chlorella is a genus of fast-growing species often isolated from freshwater habitats and cultivated as a source of nutritional supplements. However, the use of freshwater increases competition with other freshwater needs. We identified Chlorella desiccata to be worthy of further investigation as a potential algae production strain, due to its isolation from a marine environment and its promising growth and biochemical composition properties. Long-read genomic sequencing was conducted for C. desiccata UTEX 2526, resulting in a high-quality, near chromosome level, diploid genome with an assembly length of 21.55 Mbp in only 18 contigs. We also report complete circular mitochondrial and chloroplast genomes. Phylogenomic and phylogenetic analyses using nuclear, chloroplast, 18S rRNA, and actin sequences revealed that this species clades within strains currently identified as Nannochloris (Trebouxiophyceae, Chlorophyta), leading to its reclassification as Nannochloris sp. "desiccata" UTEX 2526. The mode of cell division for this species is autosporulation, differing from the type species N. bacillaris. As has occurred across multiple microalgae genera, there are repeated examples of Nannochloris species reclassification in the literature. This high-quality genome assembly and phylogenetic analysis of the potential algal production strain Nannochloris sp. "desiccata" UTEX 2526 provides an important reference and useful tool for further studying this region of the phylogenetic tree.
Collapse
Affiliation(s)
- Claire K Sanders
- Bioscience Division, Los Alamos National Laboratory, PO Box 1663, Los Alamos, New Mexico, 87545, USA
| | - Erik R Hanschen
- Bioscience Division, Los Alamos National Laboratory, PO Box 1663, Los Alamos, New Mexico, 87545, USA
| | - Thomas C Biondi
- Bioscience Division, Los Alamos National Laboratory, PO Box 1663, Los Alamos, New Mexico, 87545, USA
| | - Blake T Hovde
- Bioscience Division, Los Alamos National Laboratory, PO Box 1663, Los Alamos, New Mexico, 87545, USA
| | - Yuliya A Kunde
- Bioscience Division, Los Alamos National Laboratory, PO Box 1663, Los Alamos, New Mexico, 87545, USA
| | - Wyatt L Eng
- Bioscience Division, Los Alamos National Laboratory, PO Box 1663, Los Alamos, New Mexico, 87545, USA
| | - Taehyung Kwon
- Bioscience Division, Los Alamos National Laboratory, PO Box 1663, Los Alamos, New Mexico, 87545, USA
| | - Taraka Dale
- Bioscience Division, Los Alamos National Laboratory, PO Box 1663, Los Alamos, New Mexico, 87545, USA
| |
Collapse
|
14
|
Frantal D, Agatha S, Beisser D, Boenigk J, Darienko T, Dirren-Pitsch G, Filker S, Gruber M, Kammerlander B, Nachbaur L, Scheffel U, Stoeck T, Qian K, Weißenbacher B, Pröschold T, Sonntag B. Molecular Data Reveal a Cryptic Diversity in the Genus Urotricha (Alveolata, Ciliophora, Prostomatida), a Key Player in Freshwater Lakes, With Remarks on Morphology, Food Preferences, and Distribution. Front Microbiol 2022; 12:787290. [PMID: 35185817 PMCID: PMC8854374 DOI: 10.3389/fmicb.2021.787290] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Species of the ciliate genus Urotricha are key players in freshwater plankton communities. In the pelagial of lakes, about 20 urotrich species occur throughout an annual cycle, some of which play a pivotal role in aquatic food webs. For example, during the phytoplankton spring bloom, they consume a remarkable proportion of the algal production. In ecological studies, urotrich ciliates are usually merely identified to genus rank and grouped into size classes. This is unsatisfying considering the distinct autecological properties of individual species and their specific spatial and temporal distribution patterns. As a basis for future research, we characterized in detail four common urotrich morphotypes, i.e., specimens identified as U. furcata and tentatively as U. agilis, U. pseudofurcata, and U. castalia, using state-of-the-art methods. We used an integrative polyphasic approach, in which morphological studies (in vivo observation, silver staining methods, scanning electron microscopy) were linked with a molecular approach exploiting four different gene fragments as taxonomic DNA barcodes with different resolution potential (SSU rDNA, ITS-1, ITS-2, hypervariable V4 and V9 regions of the SSU rDNA). We shed light on the diversity of urotrich ciliates as well as on their global distribution patterns, and annual cycles. Additionally, we coupled individual species occurrences and environmental parameters, and subsequently modeled the distribution and occurrence, using logistic regressions. Furthermore, for one strain putatively identified as U. castalia, we ascertained the optimal cultivation media and food preferences. Thereby, our comprehensive view on these important freshwater ciliates that frequently occur in environmental high throughput sequencing datasets worldwide will allow future studies to better exploit protistan plankton data from lakes.
Collapse
Affiliation(s)
- Daniela Frantal
- Research Department for Limnology, Mondsee, University of Innsbruck, Mondsee, Austria
| | - Sabine Agatha
- Department of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Daniela Beisser
- Department of Biodiversity, University of Duisburg-Essen, Essen, Germany
| | - Jens Boenigk
- Department of Biodiversity, University of Duisburg-Essen, Essen, Germany
| | - Tatyana Darienko
- Research Department for Limnology, Mondsee, University of Innsbruck, Mondsee, Austria
- Experimental Phycology and Culture Collection of Algae, University of Göttingen, Göttingen, Germany
| | - Gianna Dirren-Pitsch
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Sabine Filker
- Molecular Ecology Group, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | | | - Barbara Kammerlander
- Research Department for Limnology, Mondsee, University of Innsbruck, Mondsee, Austria
- Federal Agency for Water Management, Institute for Aquatic Ecology and Fisheries Management, Mondsee, Austria
| | - Laura Nachbaur
- Research Department for Limnology, Mondsee, University of Innsbruck, Mondsee, Austria
| | - Ulrike Scheffel
- Research Department for Limnology, Mondsee, University of Innsbruck, Mondsee, Austria
| | - Thorsten Stoeck
- Ecology Group, Technische Universität Kaiserslautern, Kaiserslautern, Germany
| | - Kuimei Qian
- Research Department for Limnology, Mondsee, University of Innsbruck, Mondsee, Austria
- College of Environmental Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Birgit Weißenbacher
- Department of Biosciences, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Thomas Pröschold
- Research Department for Limnology, Mondsee, University of Innsbruck, Mondsee, Austria
| | - Bettina Sonntag
- Research Department for Limnology, Mondsee, University of Innsbruck, Mondsee, Austria
- *Correspondence: Bettina Sonntag,
| |
Collapse
|
15
|
Irisarri I, Darienko T, Pröschold T, Fürst-Jansen JMR, Jamy M, de Vries J. Unexpected cryptic species among streptophyte algae most distant to land plants. Proc Biol Sci 2021; 288:20212168. [PMID: 34814752 PMCID: PMC8611356 DOI: 10.1098/rspb.2021.2168] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 01/04/2023] Open
Abstract
Streptophytes are one of the major groups of the green lineage (Chloroplastida or Viridiplantae). During one billion years of evolution, streptophytes have radiated into an astounding diversity of uni- and multicellular green algae as well as land plants. Most divergent from land plants is a clade formed by Mesostigmatophyceae, Spirotaenia spp. and Chlorokybophyceae. All three lineages are species-poor and the Chlorokybophyceae consist of a single described species, Chlorokybus atmophyticus. In this study, we used phylogenomic analyses to shed light into the diversity within Chlorokybus using a sampling of isolates across its known distribution. We uncovered a consistent deep genetic structure within the Chlorokybus isolates, which prompted us to formally extend the Chlorokybophyceae by describing four new species. Gene expression differences among Chlorokybus species suggest certain constitutive variability that might influence their response to environmental factors. Failure to account for this diversity can hamper comparative genomic studies aiming to understand the evolution of stress response across streptophytes. Our data highlight that future studies on the evolution of plant form and function can tap into an unknown diversity at key deep branches of the streptophytes.
Collapse
Affiliation(s)
- Iker Irisarri
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidstrasse 1, 37077 Göttingen, Germany
- Campus Institute Data Science (CIDAS), University of Goettingen, Goldschmidstrasse 1, 37077 Göttingen, Germany
| | - Tatyana Darienko
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidstrasse 1, 37077 Göttingen, Germany
- Albrecht-von-Haller-Institute of Plant Sciences, Experimental Phycology and Culture Collection of Algae, University of Goettingen, Nikolausberger Weg 18, 37073 Göttingen, Germany
| | - Thomas Pröschold
- Research Department for Limnology, Leopold-Franzens-University of Innsbruck, Mondseestrasse 9, 5310 Mondsee, Austria
| | - Janine M. R. Fürst-Jansen
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidstrasse 1, 37077 Göttingen, Germany
| | - Mahwash Jamy
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Norbyvägen 18D, 75236 Uppsala, Sweden
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidstrasse 1, 37077 Göttingen, Germany
- Campus Institute Data Science (CIDAS), University of Goettingen, Goldschmidstrasse 1, 37077 Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, University of Goettingen, Goldschmidstrasse 1, 37077 Göttingen, Germany
| |
Collapse
|
16
|
Molecular Phylogeny of Unicellular Marine Coccoid Green Algae Revealed New Insights into the Systematics of the Ulvophyceae (Chlorophyta). Microorganisms 2021; 9:microorganisms9081586. [PMID: 34442668 PMCID: PMC8401757 DOI: 10.3390/microorganisms9081586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022] Open
Abstract
Most marine coccoid and sarcinoid green algal species have traditionally been placed within genera dominated by species from freshwater or soil habitats. For example, the genera Chlorocystis and Halochlorococcum contain exclusively marine species; however, their familial and ordinal affinities are unclear. They are characterized by a vegetative cell with lobated or reticulated chloroplast, formation of quadriflagellated zoospores and living epi- or endophytically within benthic macroalgae. They were integrated into the family Chlorochytriaceae which embraces all coccoid green algae with epi- or endophytic life phases. Later, they were excluded from the family of Chlorococcales based on studies of their life histories in culture, and transferred to their newly described order, Chlorocystidales of the Ulvophyceae. Both genera form a "Codiolum"-stage that serves as the unicellular sporophyte in their life cycles. Phylogenetic analyses of SSU and ITS rDNA sequences confirmed that these coccoid taxa belong to the Chlorocystidales, together with the sarcinoid genus Desmochloris. The biflagellated coccoid strains were members of the genus Sykidion, which represented its own order, Sykidiales, among the Ulvophyceae. Considering these results and the usage of the ITS-2/CBC approach revealed three species of Desmochloris, six of Chlorocystis, and three of Sykidion. Three new species and several new combinations were proposed.
Collapse
|
17
|
Multidisciplinary integrated characterization of a native Chlorella-like microalgal strain isolated from a municipal landfill leachate. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
An integrative approach sheds new light onto the systematics and ecology of the widespread ciliate genus Coleps (Ciliophora, Prostomatea). Sci Rep 2021; 11:5916. [PMID: 33723272 PMCID: PMC7960993 DOI: 10.1038/s41598-021-84265-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/07/2021] [Indexed: 01/05/2023] Open
Abstract
Species of the genus Coleps are one of the most common planktonic ciliates in lake ecosystems. The study aimed to identify the phenotypic plasticity and genetic variability of different Coleps isolates from various water bodies and from culture collections. We used an integrative approach to study the strains by (i) cultivation in a suitable culture medium, (ii) screening of the morphological variability including the presence/absence of algal endosymbionts of living cells by light microscopy, (iii) sequencing of the SSU and ITS rDNA including secondary structures, (iv) assessment of their seasonal and spatial occurrence in two lakes over a one-year cycle both from morphospecies counts and high-throughput sequencing (HTS), and, (v) proof of the co-occurrence of Coleps and their endosymbiotic algae from HTS-based network analyses in the two lakes. The Coleps strains showed a high phenotypic plasticity and low genetic variability. The algal endosymbiont in all studied strains was Micractinium conductrix and the mutualistic relationship turned out as facultative. Coleps is common in both lakes over the whole year in different depths and HTS has revealed that only one genotype respectively one species, C. viridis, was present in both lakes despite the different lifestyles (mixotrophic with green algal endosymbionts or heterotrophic without algae). Our results suggest a future revision of the species concept of the genus Coleps.
Collapse
|
19
|
Pröschold T, Darienko T. Choricystis and Lewiniosphaera gen. nov. (Trebouxiophyceae Chlorophyta), two different green algal endosymbionts in freshwater sponges. Symbiosis 2020; 82:175-188. [PMID: 33328698 PMCID: PMC7725700 DOI: 10.1007/s13199-020-00711-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/27/2020] [Indexed: 11/11/2022]
Abstract
Associations of freshwater sponges with coccoid green algae have been known for a long time. Two types of coccoid green algae, which are commonly assigned as zoochlorellae, are recognized by morphology: small coccoids (< 3 μm) without pyrenoids and larger Chlorella-like algae (4–6 μm) with pyrenoids. Despite their wide distribution in some freshwater sponges, these green algae were never studied using a combined analysis of morphology and molecular phylogeny. We investigated several endosymbiotic strains isolated from different Spongilla species, which were available in culture collections. Phylogenetic analyses of SSU and ITS rDNA sequences revealed that the strain SAG 211-40a is a member of the Chlorellaceae and represents a new species of the newly erected genus Lewiniosphaera, L symbiontica. The phylogenetic position was confirmed by morphology and ITS-2 barcode. The endosymbionts without pyrenoid were identified as Choricystis parasitica by morphology and phylogenetic analyses. The comparison with free-living strains revealed the recognition of two new Choricystis species, C. krienitzii and C. limnetica, which were confirmed by molecular signatures in V9 region of SSU rDNA and ITS-2 barcode.
Collapse
Affiliation(s)
- Thomas Pröschold
- Research Department for Limnology, Leopold-Franzens-University of Innsbruck, Mondsee, Mondseestr. 9, A-5310 Mondsee, Austria
| | - Tatyana Darienko
- Albrecht-von-Haller-Institute of Plant Sciences, Experimental Phycology and Culture Collection of Algae, Georg-August-University of Göttingen, D-37073 Göttingen, Germany
| |
Collapse
|
20
|
Krivina ES, Temraleeva AD. Identification Problems and Cryptic Diversity of Chlorella-Clade Microalgae (Chlorophyta). Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720060107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
21
|
Sommer V, Mikhailyuk T, Glaser K, Karsten U. Uncovering Unique Green Algae and Cyanobacteria Isolated from Biocrusts in Highly Saline Potash Tailing Pile Habitats, Using an Integrative Approach. Microorganisms 2020; 8:E1667. [PMID: 33121104 PMCID: PMC7692164 DOI: 10.3390/microorganisms8111667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 02/01/2023] Open
Abstract
Potash tailing piles caused by fertilizer production shape their surroundings because of the associated salt impact. A previous study in these environments addressed the functional community "biocrust" comprising various micro- and macro-organisms inhabiting the soil surface. In that previous study, biocrust microalgae and cyanobacteria were isolated and morphologically identified amongst an ecological discussion. However, morphological species identification maybe is difficult because of phenotypic plasticity, which might lead to misidentifications. The present study revisited the earlier species list using an integrative approach, including molecular methods. Seventy-six strains were sequenced using the markers small subunit (SSU) rRNA gene and internal transcribed spacer (ITS). Phylogenetic analyses confirmed some morphologically identified species. However, several other strains could only be identified at the genus level. This indicates a high proportion of possibly unknown taxa, underlined by the low congruence of the previous morphological identifications to our results. In general, the integrative approach resulted in more precise species identifications and should be considered as an extension of the previous morphological species list. The majority of taxa found were common in saline habitats, whereas some were more likely to occur in nonsaline environments. Consequently, biocrusts in saline environments of potash tailing piles contain unique microalgae and cyanobacteria that will possibly reveal several new taxa in more detailed future studies and, hence, provide new data on the biodiversity, as well as new candidates for applied research.
Collapse
Affiliation(s)
- Veronika Sommer
- Institute for Biological Sciences, Applied Ecology and Phycology, University of Rostock, 18059 Rostock, Germany; (V.S.); (K.G.)
- upi UmweltProjekt Ingenieursgesellschaft mbH, 39576 Stendal, Germany
| | - Tatiana Mikhailyuk
- National Academy of Sciences of Ukraine, M.G. Kholodny Institute of Botany, 01601 Kyiv, Ukraine;
| | - Karin Glaser
- Institute for Biological Sciences, Applied Ecology and Phycology, University of Rostock, 18059 Rostock, Germany; (V.S.); (K.G.)
| | - Ulf Karsten
- Institute for Biological Sciences, Applied Ecology and Phycology, University of Rostock, 18059 Rostock, Germany; (V.S.); (K.G.)
| |
Collapse
|
22
|
Aigner S, Glaser K, Arc E, Holzinger A, Schletter M, Karsten U, Kranner I. Adaptation to Aquatic and Terrestrial Environments in Chlorella vulgaris (Chlorophyta). Front Microbiol 2020; 11:585836. [PMID: 33178169 PMCID: PMC7593248 DOI: 10.3389/fmicb.2020.585836] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/14/2020] [Indexed: 11/20/2022] Open
Abstract
The globally distributed green microalga Chlorella vulgaris (Chlorophyta) colonizes aquatic and terrestrial habitats, but the molecular mechanisms underpinning survival in these two contrasting environments are far from understood. Here, we compared the authentic strain of C. vulgaris from an aquatic habitat with a strain from a terrestrial high alpine habitat previously determined as Chlorella mirabilis. Molecular phylogeny of SSU rDNA (823 bp) showed that the two strains differed by one nucleotide only. Sequencing of the ITS2 region confirmed that both strains belong to the same species, but to distinct ribotypes. Therefore, the terrestrial strain was re-assessed as C. vulgaris. To study the response to environmental conditions experienced on land, we assessed the effects of irradiance and temperature on growth, of temperature on photosynthesis and respiration, and of desiccation and rehydration on photosynthetic performance. In contrast to the aquatic strain, the terrestrial strain tolerated higher temperatures and light conditions, had a higher photosynthesis-to-respiration ratio at 25°C, still grew at 30°C and was able to fully recover photosynthetic performance after desiccation at 84% relative humidity. The two strains differed most in their response to the dehydration/rehydration treatment, which was further investigated by untargeted GC–MS-based metabolite profiling to gain insights into metabolic traits differentiating the two strains. The two strains differed in their allocation of carbon and nitrogen into their primary metabolites. Overall, the terrestrial strain had higher contents of readily available nitrogen-based metabolites, especially amino acids and the polyamine putrescine. Dehydration and rehydration led to differential regulation of the amino acid metabolism, the tricarboxylic acid cycle and sucrose metabolism. The data are discussed with a view to differences in phenotypic plasticity of the two strains, and we suggest that the two genetically almost identical C. vulgaris strains are attractive models to study mechanisms that protect from abiotic stress factors, which are more frequent in terrestrial than aquatic habitats, such as desiccation and irradiation.
Collapse
Affiliation(s)
- Siegfried Aigner
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Karin Glaser
- Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Erwann Arc
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | | | | | - Ulf Karsten
- Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Ilse Kranner
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
23
|
Algal Diversity in Paramecium bursaria: Species Identification, Detection of Choricystis parasitica, and Assessment of the Interaction Specificity. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12080287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ‘green’ ciliate Paramecium bursaria lives in mutualistic symbiosis with green algae belonging to the species Chlorella variabilis or Micractinium conductrix. We analysed the diversity of algal endosymbionts and their P. bursaria hosts in nine strains from geographically diverse origins. Therefore, their phylogenies using different molecular markers were inferred. The green paramecia belong to different syngens of P. bursaria. The intracellular algae were assigned to Chl. variabilis, M. conductrix or, surprisingly, Choricystis parasitica. This usually free-living alga co-occurs with M. conductrix in the host’s cytoplasm. Addressing the potential status of Chor. parasitica as second additional endosymbiont, we determined if it is capable of symbiosis establishment and replication within a host cell. Symbiont-free P. bursaria were generated by cycloheximid treatment. Those aposymbiotic P. bursaria were used for experimental infections to investigate the symbiosis specificity not only between P. bursaria and Chor. parasitica but including also Chl. variabilis and M. conductrix. For each algae we observed the uptake and incorporation in individual perialgal vacuoles. These host-symbiont associations are stable since more than five months. Thus, Chor. parasitica and P. bursaria can form an intimate and long-term interaction. This study provides new insights into the diversity of P. bursaria algal symbionts.
Collapse
|
24
|
Hu X, Tan D, Fu L, Sun X, Zhang J. Characterization of the mitochondrion genome of a Chlorella vulgaris strain isolated from rubber processing wastewater. MITOCHONDRIAL DNA PART B-RESOURCES 2020; 5:2732-2733. [PMID: 33457925 PMCID: PMC7782133 DOI: 10.1080/23802359.2020.1789004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Chlorella vulgaris ITBBA3-12 was isolated from the rubber processing wastewater and has a role in wastewater purification. Its complete mitogenome contains 88754 bp, with a G + C content of 29.7%. A total of 64 genes were annotated, including 34 protein-coding genes, 27 tRNA genes, three rRNA (rrn23, rrn16, and rrn5). Phylogenetic analysis using the mitogenomes of Trebouxiophyceae species indicated that the strain ITBBA3-12 is closely related to C. vulgaris strain UTEX259 and NJ-7, and they clustered in the Chlorella lineage.
Collapse
Affiliation(s)
- Xiaowen Hu
- Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, Hainan Bioenergy Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.,Zhanjiang Experimental Station, CATAS, Zhanjiang, Guangdong Province, China
| | - Deguan Tan
- Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, Hainan Bioenergy Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Lili Fu
- Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, Hainan Bioenergy Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xuepiao Sun
- Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, Hainan Bioenergy Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jiaming Zhang
- Institute of Tropical Bioscience and Biotechnology, MOA Key Laboratory of Tropical Crops Biology and Genetic Resources, Hainan Bioenergy Center, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.,Zhanjiang Experimental Station, CATAS, Zhanjiang, Guangdong Province, China.,Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
25
|
Micractinium tetrahymenae (Trebouxiophyceae, Chlorophyta), a New Endosymbiont Isolated from Ciliates. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12050200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endosymbiosis between coccoid green algae and ciliates are widely distributed and occur in various phylogenetic lineages among the Ciliophora. Most mixotrophic ciliates live in symbiosis with different species and genera of the so-called Chlorella clade (Trebouxiophyceae). The mixotrophic ciliates can be differentiated into two groups: (i) obligate, which always live in symbiosis with such green algae and are rarely algae-free and (ii) facultative, which formed under certain circumstances such as in anoxic environments an association with algae. A case of the facultative endosymbiosis is found in the recently described species of Tetrahymena, T. utriculariae, which lives in the bladder traps of the carnivorous aquatic plant Utricularia reflexa. The green endosymbiont of this ciliate belonged to the genus Micractinium. We characterized the isolated algal strain using an integrative approach and compared it to all described species of this genus. The phylogenetic analyses using complex evolutionary secondary structure-based models revealed that this endosymbiont represents a new species of Micractinium, M. tetrahymenae sp. nov., which was further confirmed by the ITS2/CBC approach.
Collapse
|