1
|
Maes L, Versweyveld L, Evans NR, McCabe JJ, Kelly P, Van Laere K, Lemmens R. Novel Targets for Molecular Imaging of Inflammatory Processes of Carotid Atherosclerosis: A Systematic Review. Semin Nucl Med 2024; 54:658-673. [PMID: 37996309 DOI: 10.1053/j.semnuclmed.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023]
Abstract
Computed tomography angiography (CTA), magnetic resonance angiography (MRA) and 18F-FDG-PET have proven clinical value when evaluating patients with carotid atherosclerosis. In this systematic review, we will focus on the role of novel molecular imaging tracers in that assessment and their potential strengths to stratify stroke risk. We systematically searched PubMed, Embase, the Web of Science Core Collection, and Cochrane Library for articles reporting on molecular imaging to noninvasively detect or characterize inflammation in carotid atherosclerosis. As our focus was on nonclassical novel targets, we omitted reports solely on 18F-FDG and 18F-NaF. We summarized and mapped the selected studies to provide an overview of the current clinical development in molecular imaging in relation to risk factors, imaging and histological findings, diagnostic and prognostic performance. We identified 20 articles in which the utilized tracers to visualize carotid wall inflammation were somatostatin subtype-2- (SST2-) (n = 5), CXC-motif chemokine receptor 4- (CXCR4-) (n = 3), translocator protein- (TSPO-) (n = 2) and aVβ3 integrin-ligands (n = 2) and choline-tracers (n = 2). Tracer uptake correlated with traditional cardiovascular risk factors, that is, age, gender, diabetes, hypercholesterolemia, and hypertension as well as prior cardiovascular disease. We identified discrepancies between tracer uptake and grade of stenosis, plaque calcification, and 18F-FDG uptake, suggesting the importance of alternative characterization of atherosclerosis beyond classical neuroimaging features. Immunohistochemical analysis linked tracer uptake to markers of macrophage infiltration and neovascularization. Symptomatic carotid arteries showed higher uptake compared to asymptomatic (including contralateral, nonculprit) arteries. Some studies demonstrated a potential role of these novel molecular imaging as a specific intermediary (bio)marker for outcome. Several novel tracers show promise for identification of high-risk plaque inflammation. Based on the current evidence we cautiously propose the SST2-ligands and the choline radiotracers as viable candidates for larger prospective longitudinal outcome studies to evaluate their predictive use in clinical practice.
Collapse
Affiliation(s)
- Louise Maes
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium; Department of Neurosciences, Experimental Neurology, KULeuven - University of Leuven, Leuven, Belgium.
| | - Louis Versweyveld
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium; Department of Neurosciences, Experimental Neurology, KULeuven - University of Leuven, Leuven, Belgium
| | - Nicholas R Evans
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - John J McCabe
- Health Research Board (HRB), Stroke Clinical Trials Network Ireland (SCTNI), Dublin, Ireland; School of Medicine, University College Dublin (UCD), Dublin, Ireland; Department of Geriatric Medicine, Mater Misericordiae University Hospital Dublin, Dublin, Ireland
| | - Peter Kelly
- Health Research Board (HRB), Stroke Clinical Trials Network Ireland (SCTNI), Dublin, Ireland; School of Medicine, University College Dublin (UCD), Dublin, Ireland; Mater Misericordiae University Hospital Dublin, Stroke Service, Dublin, Ireland
| | - Koen Van Laere
- Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Imaging and Pathology, KULeuven - University of Leuven - Nuclear Medicine and Molecular Imaging, Leuven, Belgium
| | - Robin Lemmens
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium; Department of Neurosciences, Experimental Neurology, KULeuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Zhang Y, Li J, Zhao J, Li X, Wang Z, Huang Y, Zhang H, Liu Q, Lei Y, Ding D. π-π Interaction-Induced Organic Long-wavelength Room-Temperature Phosphorescence for In Vivo Atherosclerotic Plaque Imaging. Angew Chem Int Ed Engl 2024; 63:e202313890. [PMID: 38059792 DOI: 10.1002/anie.202313890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/18/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Room-temperature phosphorescent (RTP) materials have great potential for in vivo imaging because they can circumvent the autofluorescence of biological tissues. In this study, a class of organic-doped long-wavelength (≈600 nm) RTP materials with benzo[c][1,2,5] thiadiazole as a guest was constructed. Both host and guest molecules have simple structures and can be directly purchased commercially at a low cost. Owing to the long phosphorescence wavelength of the doping system, it exhibited good tissue penetration (10 mm). Notably, these RTP nanoparticles were successfully used to image atherosclerotic plaques, with a signal-to-background ratio (SBR) of 44.52. This study provides a new approach for constructing inexpensive red organic phosphorescent materials and a new method for imaging cardiovascular diseases using these materials.
Collapse
Affiliation(s)
- Yufan Zhang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Jisen Li
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Jiliang Zhao
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Xuefei Li
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Zhimei Wang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Yicheng Huang
- School of Chemistry and Materials Engineering, Wenzhou University, 325035, Wenzhou, China
| | - Hongkai Zhang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China
| | - Qian Liu
- Department of Urology, Tianjin First Central Hospital, 300192, Tianjin, China
| | - Yunxiang Lei
- School of Chemistry and Materials Engineering, Wenzhou University, 325035, Wenzhou, China
| | - Dan Ding
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, 300071, Tianjin, China
| |
Collapse
|
3
|
Kim JN, Gomez-Perez L, Zimin VN, Makhlouf MHE, Al-Kindi S, Wilson DL, Lee J. Pericoronary Adipose Tissue Radiomics from Coronary Computed Tomography Angiography Identifies Vulnerable Plaques. Bioengineering (Basel) 2023; 10:360. [PMID: 36978751 PMCID: PMC10045206 DOI: 10.3390/bioengineering10030360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Pericoronary adipose tissue (PCAT) features on Computed Tomography (CT) have been shown to reflect local inflammation and increased cardiovascular risk. Our goal was to determine whether PCAT radiomics extracted from coronary CT angiography (CCTA) images are associated with intravascular optical coherence tomography (IVOCT)-identified vulnerable-plaque characteristics (e.g., microchannels (MC) and thin-cap fibroatheroma (TCFA)). The CCTA and IVOCT images of 30 lesions from 25 patients were registered. The vessels with vulnerable plaques were identified from the registered IVOCT images. The PCAT-radiomics features were extracted from the CCTA images for the lesion region of interest (PCAT-LOI) and the entire vessel (PCAT-Vessel). We extracted 1356 radiomic features, including intensity (first-order), shape, and texture features. The features were reduced using standard approaches (e.g., high feature correlation). Using stratified three-fold cross-validation with 1000 repeats, we determined the ability of PCAT-radiomics features from CCTA to predict IVOCT vulnerable-plaque characteristics. In the identification of TCFA lesions, the PCAT-LOI and PCAT-Vessel radiomics models performed comparably (Area Under the Curve (AUC) ± standard deviation 0.78 ± 0.13, 0.77 ± 0.14). For the identification of MC lesions, the PCAT-Vessel radiomics model (0.89 ± 0.09) was moderately better associated than the PCAT-LOI model (0.83 ± 0.12). In addition, both the PCAT-LOI and the PCAT-Vessel radiomics model identified coronary vessels thought to be highly vulnerable to a similar standard (i.e., both TCFA and MC; 0.88 ± 0.10, 0.91 ± 0.09). The most favorable radiomic features tended to be those describing the texture and size of the PCAT. The application of PCAT radiomics can identify coronary vessels with TCFA or MC, consistent with IVOCT. Furthermore, the use of CCTA radiomics may improve risk stratification by noninvasively detecting vulnerable-plaque characteristics that are only visible with IVOCT.
Collapse
Affiliation(s)
- Justin N. Kim
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Lia Gomez-Perez
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Vladislav N. Zimin
- Cardiovascular Imaging Core Laboratory, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Mohamed H. E. Makhlouf
- Cardiovascular Imaging Core Laboratory, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Sadeer Al-Kindi
- Cardiovascular Imaging Core Laboratory, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - David L. Wilson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Juhwan Lee
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
4
|
Kim JN, Gomez-Perez L, Zimin VN, Makhlouf MHE, Al-Kindi S, Wilson DL, Lee J. Pericoronary adipose tissue radiomics from coronary CT angiography identifies vulnerable plaques characteristics in intravascular OCT. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.09.23284346. [PMID: 36711678 PMCID: PMC9882469 DOI: 10.1101/2023.01.09.23284346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Pericoronary adipose tissue (PCAT) features on CT have been shown to reflect local inflammation, and signals increased cardiovascular risk. Our goal was to determine if PCAT radiomics extracted from coronary CT angiography (CCTA) images are associated with intravascular optical coherence tomography (IVOCT)-identified vulnerable plaque characteristics (e.g., microchannels [MC] and thin-cap fibroatheroma [TCFA]). CCTA and IVOCT images of 30 lesions from 25 patients were registered. Vessels with vulnerable plaques were identified from the registered IVOCT images. PCAT radiomics features were extracted from CCTA images for the lesion region of interest (PCAT-LOI) and the entire vessel (PCAT-Vessel). We extracted 1356 radiomics features, including intensity (first-order), shape, and texture features. Features were reduced using standard approaches (e.g., high feature correlation). Using stratified three-fold cross-validation with 1000 repeats, we determined the ability of PCAT radiomics features from CCTA to predict IVOCT vulnerable plaque characteristics. In identification of TCFA lesions, PCAT-LOI and PCAT-Vessel radiomics models performed comparably (AUC±standard deviation 0.78±0.13, 0.77±0.14). For identification of MC lesions, PCAT-Vessel radiomics model (0.89±0.09) was moderately better associated than that of PCAT-LOI model (0.83±0.12). Both PCAT-LOI and PCAT-Vessel radiomics models also similarly identified coronary vessels thought to be highly vulnerable (i.e., both TCFA and MC) (0.88±0.10, 0.91±0.09). Favorable radiomics features tended to be those describing texture and size of PCAT. PCAT radiomics can identify coronary vessels with TCFA or MC, consistent with IVOCT. CCTA radiomics may improve risk stratification by noninvasively detecting vulnerable plaque characteristics that are only visible with IVOCT.
Collapse
|
5
|
Zhang S, Liu Y, Cao Y, Zhang S, Sun J, Wang Y, Song S, Zhang H. Targeting the Microenvironment of Vulnerable Atherosclerotic Plaques: An Emerging Diagnosis and Therapy Strategy for Atherosclerosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110660. [PMID: 35238081 DOI: 10.1002/adma.202110660] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Atherosclerosis is considered one of the primary causes of cardiovascular diseases (CVDs). Unpredictable rupture of the vulnerable atherosclerotic plaques triggers adverse cardiovascular events such as acute myocardial syndrome and even sudden cardiac death. Therefore, assessing the vulnerability of atherosclerotic plaques and early intervention are of significance in reducing CVD mortality. Nanomedicine possesses tremendous advantages in achieving the integration of the diagnosis and therapy of atherosclerotic plaques because of its magnetic, optical, thermal, and catalytic properties. Based on the pathological characteristics of vulnerable plaques, stimuli-responsive nanoplatforms and surface-functionalized nanoagents are designed and have drawn great attention for accomplishing the precise imaging and treatment of vulnerable atherosclerotic plaques due to their superior properties, such as high bioavailability, lesion-targeting specificity, on-demand cargo release, and low off-target damage. Here, the characteristics of vulnerable plaques are generalized, and some targeted strategies for boosting the accuracy of plaque vulnerability evaluation by imaging and the efficacy of plaque stabilization therapy (including antioxidant therapy, macrophage depletion therapy, regulation of lipid metabolism therapy, anti-inflammation therapy, etc.) are systematically summarized. In addition, existing challenges and prospects in this field are discussed, and it is believed to provide new thinking for the diagnosis and treatment of CVDs in the near future.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Cardiovascular Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021, China
| | - Yang Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yue Cao
- Department of Neurosurgery, The First Hospital of Jilin University, 71 Ximin Street, Changchun, Jilin, 130021, China
| | - Songtao Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Jian Sun
- Department of Cardiovascular Center, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021, China
| | - Yinghui Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
6
|
Identification of pathology-confirmed vulnerable atherosclerotic lesions by coronary computed tomography angiography using radiomics analysis. Eur Radiol 2022; 32:4003-4013. [PMID: 35171348 DOI: 10.1007/s00330-021-08518-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 11/12/2021] [Accepted: 12/13/2021] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To explore whether radiomics-based machine learning (ML) models could outperform conventional diagnostic methods at identifying vulnerable lesions on coronary computed tomographic angiography (CCTA). METHODS In this retrospective study, 36 heart transplant recipients with coronary heart disease (CAD) and end-stage heart failure were included. Pathological cross-section samples of 350 plaques were collected and coregistered to patients' preoperative CCTA images. A total of 1184 radiomic features were extracted from CCTA images. Through feature selection and stratified fivefold cross-validation, we derived eight radiomics-based ML models for lesion vulnerability prediction. An independent set of 196 plaques from another 8 CAD patients who underwent heart transplants was collected to validate radiomics-based ML models' diagnostic accuracy against conventional CCTA feature-based diagnosis (presence of at least 2 high-risk plaque features). The performance of the prediction models was assessed by the area under the receiver operating characteristic curve (AUC) with 95% confidence intervals (CI). RESULTS The training group used to develop radiomics-based ML models contained 200/350 (57.1%) vulnerable plaques and the external validation group was composed of 67.3% (132/196) vulnerable plaques. The radiomics-based ML model based on eight radiomic features showed excellent cross-validation diagnostic accuracy (AUC: 0.900 ± 0.033). In the validation group, diagnosis based on conventional CCTA features demonstrated moderate performance (AUC: 0.656 [95% CI: 0.593 -0.718]), while the radiomics-based ML model showed higher diagnostic ability (0.782 [95% CI: 0.710 -0.846]). CONCLUSIONS Radiomics-based ML models showed better diagnostic ability than the conventional CCTA features at assessing coronary plaque vulnerability. KEY POINTS • CCTA has great potential in the diagnosis of vulnerable coronary artery lesions. • Radiomics model built through CCTA could discriminate coronary vulnerable lesions in good diagnostic ability. • Radiomics model could improve the ability of vulnerability diagnosis against traditional CCTA method, sensitivity especially.
Collapse
|
7
|
Qiao R, Huang X, Qin Y, Li Y, Davis TP, Hagemeyer CE, Gao M. Recent advances in molecular imaging of atherosclerotic plaques and thrombosis. NANOSCALE 2020; 12:8040-8064. [PMID: 32239038 DOI: 10.1039/d0nr00599a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As the complications of atherosclerosis such as myocardial infarction and stroke are still one of the leading causes of mortality worldwide, the development of new diagnostic tools for the early detection of plaque instability and thrombosis is urgently needed. Advanced molecular imaging probes based on functional nanomaterials in combination with cutting edge imaging techniques are now paving the way for novel and unique approaches to monitor the inflammatory progress in atherosclerosis. This review focuses on the development of various molecular probes for the diagnosis of plaques and thrombosis in atherosclerosis, along with perspectives of their diagnostic applications in cardiovascular diseases. Specifically, we summarize the biological targets that can be used for atherosclerosis and thrombosis imaging. Then we describe the emerging molecular imaging techniques based on the utilization of engineered nanoprobes together with their challenges in clinical translation.
Collapse
Affiliation(s)
- Ruirui Qiao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Li S, Gou T, Wang Q, Chen M, Chen Z, Xu M, Wang Y, Han D, Cao R, Liu J, Liang P, Dai Z, Cao F. Ultrasound/Optical Dual-Modality Imaging for Evaluation of Vulnerable Atherosclerotic Plaques with Osteopontin Targeted Nanoparticles. Macromol Biosci 2019; 20:e1900279. [PMID: 31885210 DOI: 10.1002/mabi.201900279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/26/2019] [Indexed: 11/10/2022]
Abstract
Because of the high mortality of coronary atherosclerotic heart diseases, it is necessary to develop novel early detection methods for vulnerable atherosclerotic plaques. Phenotype transformation of vascular smooth muscle cells (VSMCs) plays a vital role in progressed atherosclerotic plaques. Osteopontin (OPN) is one of the biomarkers for phenotypic conversion of VSMCs. Significant higher OPN expression is found in foam cells along with the aggravating capacity of macrophage recruitment due to its arginine-glycine-aspartate sequence and interaction with CD44. Herein, a dual-modality imaging probe, OPN targeted nanoparticles (Cy5.5-anti-OPN-PEG-PLA-PFOB, denoted as COP-NPs), is constructed to identify the molecular characteristics of high-risk atherosclerosis by ultrasound and optical imaging. Characterization, biocompatibility, good binding sensibility, and specificity are evaluated in vitro. For in vivo study, apolipoprotein E deficien (ApoE-/- ) mice fed with high fat diet for 20-24 weeks are used as atherosclerotic model. Ultrasound and optical imaging reveal that the nanoparticles are accumulated in the vulnerable atherosclerotic plaques. OPN targeted nanoparticles are demonstrated to be a good contrast agent in molecular imaging of synthetic VSMCs and foam cells, which can be a promising tool to identify the vulnerable atherosclerotic plaques.
Collapse
Affiliation(s)
- Sulei Li
- Medical School of Chinese PLA and National Clinical Research Center of Geriatric Disease, Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Tiantian Gou
- Medical School of Chinese PLA and National Clinical Research Center of Geriatric Disease, Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qi Wang
- Medical School of Chinese PLA and National Clinical Research Center of Geriatric Disease, Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Min Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Ze Chen
- Medical School of Chinese PLA and National Clinical Research Center of Geriatric Disease, Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Mengqi Xu
- Medical School of Chinese PLA and National Clinical Research Center of Geriatric Disease, Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yabin Wang
- Medical School of Chinese PLA and National Clinical Research Center of Geriatric Disease, Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Dong Han
- Medical School of Chinese PLA and National Clinical Research Center of Geriatric Disease, Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Ruihua Cao
- Medical School of Chinese PLA and National Clinical Research Center of Geriatric Disease, Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Junsong Liu
- Medical School of Chinese PLA and National Clinical Research Center of Geriatric Disease, Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Ping Liang
- Department of Interventional Ultrasound, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, 100871, China
| | - Feng Cao
- Medical School of Chinese PLA and National Clinical Research Center of Geriatric Disease, Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| |
Collapse
|
9
|
Kigka VI, Sakellarios A, Kyriakidis S, Rigas G, Athanasiou L, Siogkas P, Tsompou P, Loggitsi D, Benz DC, Buechel R, Lemos PA, Pelosi G, Michalis LK, Fotiadis DI. A three-dimensional quantification of calcified and non-calcified plaques in coronary arteries based on computed tomography coronary angiography images: Comparison with expert's annotations and virtual histology intravascular ultrasound. Comput Biol Med 2019; 113:103409. [PMID: 31480007 DOI: 10.1016/j.compbiomed.2019.103409] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/31/2022]
Abstract
The detection, quantification and characterization of coronary atherosclerotic plaques has a major effect on the diagnosis and treatment of coronary artery disease (CAD). Different studies have reported and evaluated the noninvasive ability of Computed Tomography Coronary Angiography (CTCA) to identify coronary plaque features. The identification of calcified plaques (CP) and non-calcified plaques (NCP) using CTCA has been extensively studied in cardiovascular research. However, NCP detection remains a challenging problem in CTCA imaging, due to the similar intensity values of NCP compared to the perivascular tissue, which surrounds the vasculature. In this work, we present a novel methodology for the identification of the plaque burden of the coronary artery and the volumetric quantification of CP and NCP utilizing CTCA images and we compare the findings with virtual histology intravascular ultrasound (VH-IVUS) and manual expert's annotations. Bland-Altman analyses were employed to assess the agreement between the presented methodology and VH-IVUS. The assessment of the plaque volume, the lesion length and the plaque area in 18 coronary lesions indicated excellent correlation with VH-IVUS. More specifically, for the CP lesions the correlation of plaque volume, lesion length and plaque area was 0.93, 0.84 and 0.85, respectively, whereas the correlation of plaque volume, lesion length and plaque area for the NCP lesions was 0.92, 0.95 and 0.81, respectively. In addition to this, the segmentation of the lumen, CP and NCP in 1350 CTCA slices indicated that the mean value of DICE coefficient is 0.72, 0.7 and 0.62, whereas the mean HD value is 1.95, 1.74 and 1.95, for the lumen, CP and NCP, respectively.
Collapse
Affiliation(s)
- Vassiliki I Kigka
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, GR 45110, Ioannina, Greece; Institute of Molecular Biology and Biotechnology, Dept. of Biomedical Research Institute - FORTH, University Campus of Ioannina, GR 45110, Ioannina, Greece
| | - Antonis Sakellarios
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, GR 45110, Ioannina, Greece; Institute of Molecular Biology and Biotechnology, Dept. of Biomedical Research Institute - FORTH, University Campus of Ioannina, GR 45110, Ioannina, Greece
| | - Savvas Kyriakidis
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, GR 45110, Ioannina, Greece; Institute of Molecular Biology and Biotechnology, Dept. of Biomedical Research Institute - FORTH, University Campus of Ioannina, GR 45110, Ioannina, Greece
| | - George Rigas
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, GR 45110, Ioannina, Greece; Institute of Molecular Biology and Biotechnology, Dept. of Biomedical Research Institute - FORTH, University Campus of Ioannina, GR 45110, Ioannina, Greece
| | - Lambros Athanasiou
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Panagiotis Siogkas
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, GR 45110, Ioannina, Greece; Institute of Molecular Biology and Biotechnology, Dept. of Biomedical Research Institute - FORTH, University Campus of Ioannina, GR 45110, Ioannina, Greece
| | - Panagiota Tsompou
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, GR 45110, Ioannina, Greece
| | | | - Dominik C Benz
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Ramistrasse 100, 8091, Zurich, Switzerland
| | - Ronny Buechel
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Ramistrasse 100, 8091, Zurich, Switzerland
| | - Pedro A Lemos
- Dept. of Interventional Cardiology, Heart Institute, University of São Paulo Medical School, São Paulo-SP, 05403-000, Brazil; Dept. of Interventional Cardiology, Hospital Israelita Albert Einstein, Sao Paulo-SP, 05652-000, Brazil
| | - Gualtiero Pelosi
- Institute of Clinical Physiology, National Research Council, Pisa, IT 56124, Italy
| | - Lampros K Michalis
- Dept. of Interventional Cardiology, Medical School, University of Ioannina, GR 45110, Ioannina, Greece
| | - Dimitrios I Fotiadis
- Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and Engineering, University of Ioannina, GR 45110, Ioannina, Greece; Institute of Molecular Biology and Biotechnology, Dept. of Biomedical Research Institute - FORTH, University Campus of Ioannina, GR 45110, Ioannina, Greece.
| |
Collapse
|
10
|
Vulnerable Plaque, Characteristics, Detection, and Potential Therapies. J Cardiovasc Dev Dis 2019; 6:jcdd6030026. [PMID: 31357630 PMCID: PMC6787609 DOI: 10.3390/jcdd6030026] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 12/16/2022] Open
Abstract
Plaque development and rupture are hallmarks of atherosclerotic vascular disease. Despite current therapeutic developments, there is an unmet necessity in the prevention of atherosclerotic vascular disease. It remains a challenge to determine at an early stage if atherosclerotic plaque will become unstable and vulnerable. The arrival of molecular imaging is receiving more attention, considering it allows for a better understanding of the biology of human plaque and vulnerabilities. Various plaque therapies with common goals have been tested in high-risk patients with cardiovascular disease. In this work, the process of plaque instability, along with current technologies for sensing and predicting high-risk plaques, is debated. Updates on potential novel therapeutic approaches are also summarized.
Collapse
|
11
|
Woodside DG, Tanifum EA, Ghaghada KB, Biediger RJ, Caivano AR, Starosolski ZA, Khounlo S, Bhayana S, Abbasi S, Craft JW, Maxwell DS, Patel C, Stupin IV, Bakthavatsalam D, Market RV, Willerson JT, Dixon RAF, Vanderslice P, Annapragada AV. Magnetic Resonance Imaging of Atherosclerotic Plaque at Clinically Relevant Field Strengths (1T) by Targeting the Integrin α4β1. Sci Rep 2018; 8:3733. [PMID: 29487319 PMCID: PMC5829217 DOI: 10.1038/s41598-018-21893-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 02/12/2018] [Indexed: 02/07/2023] Open
Abstract
Inflammation drives the degradation of atherosclerotic plaque, yet there are no non-invasive techniques available for imaging overall inflammation in atherosclerotic plaques, especially in the coronary arteries. To address this, we have developed a clinically relevant system to image overall inflammatory cell burden in plaque. Here, we describe a targeted contrast agent (THI0567-targeted liposomal-Gd) that is suitable for magnetic resonance (MR) imaging and binds with high affinity and selectivity to the integrin α4β1(very late antigen-4, VLA-4), a key integrin involved in recruiting inflammatory cells to atherosclerotic plaques. This liposomal contrast agent has a high T1 relaxivity (~2 × 105 mM-1s-1 on a particle basis) resulting in the ability to image liposomes at a clinically relevant MR field strength. We were able to visualize atherosclerotic plaques in various regions of the aorta in atherosclerosis-prone ApoE-/- mice on a 1 Tesla small animal MRI scanner. These enhanced signals corresponded to the accumulation of monocyte/macrophages in the subendothelial layer of atherosclerotic plaques in vivo, whereas non-targeted liposomal nanoparticles did not demonstrate comparable signal enhancement. An inflammatory cell-targeted method that has the specificity and sensitivity to measure the inflammatory burden of a plaque could be used to noninvasively identify patients at risk of an acute ischemic event.
Collapse
Affiliation(s)
- Darren G Woodside
- Department of Molecular Cardiology, Texas Heart Institute, 6770 Bertner Avenue, Houston, Texas, 77030, USA.
| | - Eric A Tanifum
- Department of Pediatric Radiology, Texas Children's Hospital, 6621 Fannin Street, Houston, Texas, 77030, USA
| | - Ketan B Ghaghada
- Department of Pediatric Radiology, Texas Children's Hospital, 6621 Fannin Street, Houston, Texas, 77030, USA
| | - Ronald J Biediger
- Department of Molecular Cardiology, Texas Heart Institute, 6770 Bertner Avenue, Houston, Texas, 77030, USA
| | - Amy R Caivano
- Department of Molecular Cardiology, Texas Heart Institute, 6770 Bertner Avenue, Houston, Texas, 77030, USA
| | - Zbigniew A Starosolski
- Department of Pediatric Radiology, Texas Children's Hospital, 6621 Fannin Street, Houston, Texas, 77030, USA
| | - Sayadeth Khounlo
- Department of Molecular Cardiology, Texas Heart Institute, 6770 Bertner Avenue, Houston, Texas, 77030, USA
| | - Saakshi Bhayana
- Department of Pediatric Radiology, Texas Children's Hospital, 6621 Fannin Street, Houston, Texas, 77030, USA
| | - Shahrzad Abbasi
- Department of Molecular Cardiology, Texas Heart Institute, 6770 Bertner Avenue, Houston, Texas, 77030, USA
| | - John W Craft
- Department of Molecular Cardiology, Texas Heart Institute, 6770 Bertner Avenue, Houston, Texas, 77030, USA.,Department of Biology and Chemistry, University of Houston, 4800 Calhoun Road, Houston, Texas, 77004, USA
| | - David S Maxwell
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas, 77030, USA.,Department of Institutional Analytics and Informatics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chandreshkumar Patel
- Department of Pediatric Radiology, Texas Children's Hospital, 6621 Fannin Street, Houston, Texas, 77030, USA
| | - Igor V Stupin
- Department of Pediatric Radiology, Texas Children's Hospital, 6621 Fannin Street, Houston, Texas, 77030, USA
| | | | - Robert V Market
- Department of Molecular Cardiology, Texas Heart Institute, 6770 Bertner Avenue, Houston, Texas, 77030, USA
| | - James T Willerson
- Division of Cardiology Research, Texas Heart Institute, 6770 Bertner Avenue, Houston, Texas, 77030, USA
| | - Richard A F Dixon
- Department of Molecular Cardiology, Texas Heart Institute, 6770 Bertner Avenue, Houston, Texas, 77030, USA
| | - Peter Vanderslice
- Department of Molecular Cardiology, Texas Heart Institute, 6770 Bertner Avenue, Houston, Texas, 77030, USA
| | - Ananth V Annapragada
- Department of Pediatric Radiology, Texas Children's Hospital, 6621 Fannin Street, Houston, Texas, 77030, USA.
| |
Collapse
|
12
|
|
13
|
Anwaier G, Chen C, Cao Y, Qi R. A review of molecular imaging of atherosclerosis and the potential application of dendrimer in imaging of plaque. Int J Nanomedicine 2017; 12:7681-7693. [PMID: 29089763 PMCID: PMC5656339 DOI: 10.2147/ijn.s142385] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Despite the fact that technological advancements have been made in diagnosis and treatment, cardiovascular diseases (CVDs) remain the leading cause of mortality and morbidity worldwide. Early detection of atherosclerosis (AS), especially vulnerable plaques, plays a crucial role in the prevention of acute coronary syndrome (ACS). Targeting the critical cytokines and molecules that are upregulated during the biological process of AS by in vivo molecular imaging has been widely used in plaque imaging. With their three-dimensional architecture, composition, and abundant terminal functional groups, dendrimers provide a platform for multitargeting and multimodal imaging. Thus, modified dendrimers with the key molecules upregulated in AS plaques will be an innovative attempt to achieve targeted imaging of AS plaques specifically and efficiently. This review was aimed to address some recent works on imaging of AS plaques using various types of image technology and further discuss the applications of dendrimers, an innovative yet seldom used method in imaging of AS plaques due to some limitations and challenges, and we highlight the bright future of the modified dendrimers in characterizing AS plaques.
Collapse
Affiliation(s)
- Gulinigaer Anwaier
- Peking University Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of education, Peking University Health Science Center.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing.,School of Basic Medical Science, Shihezi University, Shihezi, Xinjiang, People's Republic of China
| | - Cong Chen
- Peking University Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of education, Peking University Health Science Center.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing
| | - Yini Cao
- Peking University Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of education, Peking University Health Science Center.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing
| | - Rong Qi
- Peking University Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of education, Peking University Health Science Center.,Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Beijing.,School of Basic Medical Science, Shihezi University, Shihezi, Xinjiang, People's Republic of China
| |
Collapse
|