1
|
Dhalla NS, Ostadal P, Tappia PS. Involvement of Oxidative Stress and Antioxidants in Modification of Cardiac Dysfunction Due to Ischemia-Reperfusion Injury. Antioxidants (Basel) 2025; 14:340. [PMID: 40227421 PMCID: PMC11939711 DOI: 10.3390/antiox14030340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 03/11/2025] [Indexed: 04/15/2025] Open
Abstract
Delayed reperfusion of the ischemic heart (I/R) is known to impair the recovery of cardiac function and produce a wide variety of myocardial defects, including ultrastructural damage, metabolic alterations, subcellular Ca2+-handling abnormalities, activation of proteases, and changes in cardiac gene expression. Although I/R injury has been reported to induce the formation of reactive oxygen species (ROS), inflammation, and intracellular Ca2+ overload, the generation of oxidative stress is considered to play a critical role in the development of cardiac dysfunction. Increases in the production of superoxide, hydroxyl radicals, and oxidants, such as hydrogen peroxide and hypochlorous acid, occur in hearts subjected to I/R injury. In fact, mitochondria are a major source of the excessive production of ROS in I/R hearts due to impairment in the electron transport system as well as activation of xanthine oxidase and NADPH oxidase. Nitric oxide synthase, mainly present in the endothelium, is also activated due to I/R injury, leading to the production of nitric oxide, which, upon combination with superoxide radicals, generates nitrosative stress. Alterations in cardiac function, sarcolemma, sarcoplasmic reticulum Ca2+-handling activities, mitochondrial oxidative phosphorylation, and protease activation due to I/R injury are simulated upon exposing the heart to the oxyradical-generating system (xanthine plus xanthine oxidase) or H2O2. On the other hand, the activation of endogenous antioxidants such as superoxide dismutase, catalase, glutathione peroxidase, and the concentration of a transcription factor (Nrf2), which modulates the expression of various endogenous antioxidants, is depressed due to I/R injury in hearts. Furthermore, pretreatment of hearts with antioxidants such as catalase plus superoxide dismutase, N-acetylcysteine, and mercaptopropionylglycerine has been observed to attenuate I/R-induced subcellular Ca2+ handling and changes in Ca2+-regulatory activities; additionally, it has been found to depress protease activation and improve the recovery of cardiac function. These observations indicate that oxidative stress is intimately involved in the pathological effects of I/R injury and different antioxidants attenuate I/R-induced subcellular alterations and improve the recovery of cardiac function. Thus, we are faced with the task of developing safe and effective antioxidants as well as agents for upregulating the expression of endogenous antioxidants for the therapy of I/R injury.
Collapse
Affiliation(s)
- Naranjan S. Dhalla
- St. Boniface Hospital Albrechtsen Research Centre, Institute of Cardiovascular Sciences, Department of Physiology & Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Petr Ostadal
- Department of Cardiology, 2nd Faculty of Medicine, Charles University, Motol University Hospital, V Uvalu 84, 15000 Prague, Czech Republic;
| | - Paramjit S. Tappia
- Asper Clinical Research Institute, St. Boniface Hospital, Winnipeg, MB R2H 2A6, Canada;
| |
Collapse
|
2
|
Abo-Elmagd IF, Mahmoud AM, Al-Ghobashy MA, Nebsen M, Rabie MA, Mohamed AF, Ahmed LA, El Sayed NS, Arafa RK, Todd R, Elgebaly SA. Development and validation of an LC‒MS/MS method for the determination of cyclocreatine phosphate and its related endogenous biomolecules in rat heart tissues. BMC Chem 2024; 18:214. [PMID: 39497217 PMCID: PMC11536664 DOI: 10.1186/s13065-024-01304-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/18/2024] [Indexed: 11/07/2024] Open
Abstract
The cardioprotective drug cyclocreatine phosphate has been awarded Food and Drug Administration-orphan drug designation for the prevention of ischemic injury to enhance cardiac graft recovery and survival in heart transplantation. Cyclocreatine phosphate is the water-soluble derivative of cyclocreatine. Estimating the levels of Cyclocreatine phosphate, Adenosine triphosphate, Creatine Phosphate, Creatine and Cyclocreatine helps us in understanding the energy state as well as evaluating the heart cells' function. The quantification of endogenous compounds imposes a challenging task for analysts because of the absence of a true blank matrix, whose use is required according to international guidelines. Recently, the International Council for Harmonization issued a new guideline that contains guidance on the validation of methods used to quantify endogenous components, such as the background subtraction approach that was employed in our current study. Specifically, we developed and validated a sensitive, reliable and accurate liquid chromatography-tandem mass spectrometry assay to determine simultaneously the levels of mentioned endogenous compounds in rat heart tissue. Tissue samples were prepared by protein precipitation extraction using water: methanol (1:1). Using Ultra Performance Liquid Chromatography, Chromatographic separation was achieved with ZORBAX Eclipse Plus C18 4.6 × 100 mm,3.5 μm column and conditions as following: ammonium acetate (pH 8.5): acetonitrile, 70:30 mobile phase, 0.7 mL/min flow rate and 25 °C temperature. Electrospray ionization mass detector with Multiple reaction monitoring mode was then employed, using both positive and negative modes, Analysis was carried out using 5.00-2000.00 ng/mL linear concentration range within 2 min for each analyte. According to Food and Drug Administration guidelines for bioanalytical methods, validation was carried out. We investigated the matrix effect, recovery efficiency and process efficiency for the analyte in neat solvent, postextraction matrix and tissue. The results stated mean percentage recoveries higher than 99%, accuracy 93.32-111.99%, and Relative Standard Deviation (RSD) below 15% within the concentration range of our study which indicated that target analytes' stability in their real matrix is sufficient under the employed experimental conditions.
Collapse
Affiliation(s)
- Ibrahim F Abo-Elmagd
- Bioanalysis Research Group, School of Pharmacy, New Giza University, Giza, 12256, Egypt
| | - Amr M Mahmoud
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
- Department of Chemistry, School of Pharmacy, Newgiza University (NGU), New Giza, Km 22 Cairo-Alex Road, Cairo, Egypt.
| | - Medhat A Al-Ghobashy
- Bioanalysis Research Group, School of Pharmacy, New Giza University, Giza, 12256, Egypt
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Marianne Nebsen
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Mostafa A Rabie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Faculty of Pharmacy and Drug Technology, Egyptian Chinese University (ECU), Cairo, 19346, Egypt
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Faculty of Pharmacy, King Salman International University (KSIU), South Sinai Government, Ras Sedr city, 46612, Egypt
| | - Lamiaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Reem K Arafa
- Biomedical Sciences Program & Drug Design and Discovery Lab, Zewail City of Science and Technology, Cairo, 12578, Egypt
| | - Robert Todd
- ProChem International, LLC, Sheboygan, Wisconsin, USA
| | - Salwa A Elgebaly
- Nour Heart, Inc., Vienna, Virginia, USA
- University of Connecticut, Faculty of Medicine, Farmington, Connecticut, USA
| |
Collapse
|
3
|
Kutryb-Zając B. Editorial for the Special Issue Titled "Adenosine Metabolism: Key Targets in Cardiovascular Pharmacology". Pharmaceuticals (Basel) 2024; 17:751. [PMID: 38931418 PMCID: PMC11206363 DOI: 10.3390/ph17060751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Adenine nucleotides and adenosine maintain cardiovascular homeostasis, producing diverse effects by intracellular and extracellular mechanisms [...].
Collapse
|
4
|
Yang S, Qin C, Chen M, Chu Y, Tang Y, Zhou L, Zhang H, Dong M, Pang X, Chen L, Wu L, Tian D, Wang W. TREM2-IGF1 Mediated Glucometabolic Enhancement Underlies Microglial Neuroprotective Properties During Ischemic Stroke. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305614. [PMID: 38151703 PMCID: PMC10933614 DOI: 10.1002/advs.202305614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/02/2023] [Indexed: 12/29/2023]
Abstract
Microglia, the major resident immune cells in the central nervous system, serve as the frontline soldiers against cerebral ischemic injuries, possibly along with metabolic alterations. However, signaling pathways involved in the regulation of microglial immunometabolism in ischemic stroke remain to be further elucidated. In this study, using single-nuclei RNA sequencing, a microglial subcluster up-regulated in ischemic brain tissues is identified, with high expression of Igf1 and Trem2, neuroprotective transcriptional signature and enhanced oxidative phosphorylation. Microglial depletion by PLX3397 exacerbates ischemic brain damage, which is reversed by repopulating the microglia with high Igf1 and Trem2 phenotype. Mechanistically, Igf1 serves as one of the major down-stream molecules of Trem2, and Trem2-Igf1 signaling axis regulates microglial functional and metabolic profiles, exerting neuroprotective effects on ischemic stroke. Overexpression of Igf1 and supplementation of cyclocreatine restore microglial glucometabolic levels and cellular functions even in the absence of Trem2. These findings suggest that Trem2-Igf1 signaling axis reprograms microglial immunometabolic profiles and shifts microglia toward a neuroprotective phenotype, which has promising therapeutic potential in treating ischemic stroke.
Collapse
Affiliation(s)
- Sheng Yang
- Department of NeurologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Hubei Key Laboratory of Neural Injury and Functional ReconstructionHuazhong University of Science and TechnologyWuhan430030China
| | - Chuan Qin
- Department of NeurologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Hubei Key Laboratory of Neural Injury and Functional ReconstructionHuazhong University of Science and TechnologyWuhan430030China
| | - Man Chen
- Department of NeurologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Hubei Key Laboratory of Neural Injury and Functional ReconstructionHuazhong University of Science and TechnologyWuhan430030China
| | - Yun‐Hui Chu
- Department of NeurologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Hubei Key Laboratory of Neural Injury and Functional ReconstructionHuazhong University of Science and TechnologyWuhan430030China
| | - Yue Tang
- Department of NeurologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Hubei Key Laboratory of Neural Injury and Functional ReconstructionHuazhong University of Science and TechnologyWuhan430030China
| | - Luo‐Qi Zhou
- Department of NeurologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Hubei Key Laboratory of Neural Injury and Functional ReconstructionHuazhong University of Science and TechnologyWuhan430030China
| | - Hang Zhang
- Department of NeurologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Hubei Key Laboratory of Neural Injury and Functional ReconstructionHuazhong University of Science and TechnologyWuhan430030China
| | - Ming‐Hao Dong
- Department of NeurologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Hubei Key Laboratory of Neural Injury and Functional ReconstructionHuazhong University of Science and TechnologyWuhan430030China
| | - Xiao‐Wei Pang
- Department of NeurologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Hubei Key Laboratory of Neural Injury and Functional ReconstructionHuazhong University of Science and TechnologyWuhan430030China
| | - Lian Chen
- Department of NeurologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Hubei Key Laboratory of Neural Injury and Functional ReconstructionHuazhong University of Science and TechnologyWuhan430030China
| | - Long‐Jun Wu
- Department of NeurologyMayo ClinicRochesterMN55905USA
| | - Dai‐Shi Tian
- Department of NeurologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Hubei Key Laboratory of Neural Injury and Functional ReconstructionHuazhong University of Science and TechnologyWuhan430030China
| | - Wei Wang
- Department of NeurologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
- Hubei Key Laboratory of Neural Injury and Functional ReconstructionHuazhong University of Science and TechnologyWuhan430030China
| |
Collapse
|
5
|
El-Yazbi AF, Elrewiny MA, Habib HM, Eid AH, Elzahhar PA, Belal ASF. Thermogenic Modulation of Adipose Depots: A Perspective on Possible Therapeutic Intervention with Early Cardiorenal Complications of Metabolic Impairment. Mol Pharmacol 2023; 104:187-194. [PMID: 37567782 DOI: 10.1124/molpharm.123.000704] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Cardiovascular complications of diabetes and obesity remain a major cause for morbidity and mortality worldwide. Despite significant advances in the pharmacotherapy of metabolic disease, the available approaches do not prevent or slow the progression of complications. Moreover, a majority of patients present with significant vascular involvement at early stages of dysfunction prior to overt metabolic changes. The lack of disease-modifying therapies affects millions of patients globally, causing a massive economic burden due to these complications. Significantly, adipose tissue inflammation was implicated in the pathogenesis of metabolic syndrome, diabetes, and obesity. Specifically, perivascular adipose tissue (PVAT) and perirenal adipose tissue (PRAT) depots influence cardiovascular and renal structure and function. Accumulating evidence implicates localized PVAT/PRAT inflammation as the earliest response to metabolic impairment leading to cardiorenal dysfunction. Increased mitochondrial uncoupling protein 1 (UCP1) expression and function lead to PVAT/PRAT hypoxia and inflammation as well as vascular, cardiac, and renal dysfunction. As UCP1 function remains an undruggable target so far, modulation of the augmented UCP1-mediated PVAT/PRAT thermogenesis constitutes a lucrative target for drug development to mitigate early cardiorenal involvement. This can be achieved either by subtle targeted reduction in UCP-1 expression using innovative proteolysis activating chimeric molecules (PROTACs) or by supplementation with cyclocreatine phosphate, which augments the mitochondrial futile creatine cycling and thus decreases UCP1 activity, enhances the efficiency of oxygen use, and reduces hypoxia. Once developed, these molecules will be first-in-class therapeutic tools to directly interfere with and reverse the earliest pathology underlying cardiac, vascular, and renal dysfunction accompanying the early metabolic deterioration. SIGNIFICANCE STATEMENT: Adipose tissue dysfunction plays a major role in the pathogenesis of metabolic diseases and their complications. Although mitochondrial alterations are common in metabolic impairment, it was only recently shown that the early stages of metabolic challenge involve inflammatory changes in select adipose depots associated with increased uncoupling protein 1 thermogenesis and hypoxia. Manipulating this mode of thermogenesis can help mitigate the early inflammation and the consequent cardiorenal complications.
Collapse
Affiliation(s)
- Ahmed F El-Yazbi
- Department of Pharmacology and Toxicology (A.F.E.-Y.) and Department of Pharmaceutical Chemistry (P.A.E., A.S.F.B.), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Research and Innovation Hub, Alamein International University, Alamein, Egypt (A.F.E.-Y., M.A.E., H.M.H.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Mohamed A Elrewiny
- Department of Pharmacology and Toxicology (A.F.E.-Y.) and Department of Pharmaceutical Chemistry (P.A.E., A.S.F.B.), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Research and Innovation Hub, Alamein International University, Alamein, Egypt (A.F.E.-Y., M.A.E., H.M.H.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Hosam M Habib
- Department of Pharmacology and Toxicology (A.F.E.-Y.) and Department of Pharmaceutical Chemistry (P.A.E., A.S.F.B.), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Research and Innovation Hub, Alamein International University, Alamein, Egypt (A.F.E.-Y., M.A.E., H.M.H.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Ali H Eid
- Department of Pharmacology and Toxicology (A.F.E.-Y.) and Department of Pharmaceutical Chemistry (P.A.E., A.S.F.B.), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Research and Innovation Hub, Alamein International University, Alamein, Egypt (A.F.E.-Y., M.A.E., H.M.H.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Perihan A Elzahhar
- Department of Pharmacology and Toxicology (A.F.E.-Y.) and Department of Pharmaceutical Chemistry (P.A.E., A.S.F.B.), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Research and Innovation Hub, Alamein International University, Alamein, Egypt (A.F.E.-Y., M.A.E., H.M.H.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| | - Ahmed S F Belal
- Department of Pharmacology and Toxicology (A.F.E.-Y.) and Department of Pharmaceutical Chemistry (P.A.E., A.S.F.B.), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Research and Innovation Hub, Alamein International University, Alamein, Egypt (A.F.E.-Y., M.A.E., H.M.H.); and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar (A.H.E.)
| |
Collapse
|
6
|
Elgebaly SA, Peacock WF, Christenson RH, Kreutzer DL, Faraag AHI, Sarguos AMM, El-Khazragy N. Integrated Bioinformatics Analysis Confirms the Diagnostic Value of Nourin-Dependent miR-137 and miR-106b in Unstable Angina Patients. Int J Mol Sci 2023; 24:14783. [PMID: 37834231 PMCID: PMC10573268 DOI: 10.3390/ijms241914783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The challenge of rapidly diagnosing myocardial ischemia in unstable angina (UA) patients presenting to the Emergency Department (ED) is due to a lack of sensitive blood biomarkers. This has prompted an investigation into microRNAs (miRNAs) related to cardiac-derived Nourin for potential diagnostic application. The Nourin protein is rapidly expressed in patients with acute coronary syndrome (ACS) (UA and acute myocardial infarction (AMI)). MicroRNAs regulate gene expression through mRNA binding and, thus, may represent potential biomarkers. We initially identified miR-137 and miR-106b and conducted a clinical validation, which demonstrated that they were highly upregulated in ACS patients, but not in healthy subjects and non-ACS controls. Using integrated comprehensive bioinformatics analysis, the present study confirms that the Nourin protein targets miR-137 and miR-106b, which are linked to myocardial ischemia and inflammation associated with ACS. Molecular docking demonstrated robust interactions between the Nourin protein and miR137/hsa-miR-106b, involving hydrogen bonds and hydrophobic interactions, with -10 kcal/mol binding energy. I-TASSER generated Nourin analogs, with the top 10 chosen for structural insights. Antigenic regions and MHCII epitopes within the Nourin SPGADGNGGEAMPGG sequence showed strong binding to HLA-DR/DQ alleles. The Cytoscape network revealed interactions of -miR137/hsa-miR--106b and Phosphatase and tensin homolog (PTEN) in myocardial ischemia. RNA Composer predicted the secondary structure of miR-106b. Schrödinger software identified key Nourin-RNA interactions critical for complex stability. The study identifies miR-137 and miR-106b as potential ACS diagnostic and therapeutic targets. This research underscores the potential of miRNAs targeting Nourin for precision ACS intervention. The analysis leverages RNA Composer, Schrödinger, and I-TASSER tools to explore interactions and structural insights. Robust Nourin-miRNA interactions are established, bolstering the case for miRNA-based interventions in ischemic injury. In conclusion, the study contributes to UA and AMI diagnosis strategies through bioinformatics-guided exploration of Nourin-targeting miRNAs. Supported by comprehensive molecular analysis, the hypoxia-induced miR-137 for cell apoptosis (a marker of cell damage) and the inflammation-induced miR-106b (a marker of inflammation) confirmed their potential clinical use as diagnostic biomarkers. This research reinforces the growing role of miR-137/hsa-miR-106b in the early diagnosis of myocardial ischemia in unstable angina patients.
Collapse
Affiliation(s)
- Salwa A. Elgebaly
- Research & Development, Nour Heart, Inc., Vienna, VA 22180, USA
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA;
| | - W. Frank Peacock
- Department of Emergency Medicine, Baylor College of Medicine, Houston, TX 77057, USA;
| | - Robert H. Christenson
- Department of Pathology, School of Medicine, University of Maryland, Baltimore, MD 2120, USA;
| | - Donald L. Kreutzer
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT 06032, USA;
| | - Ahmed Hassan Ibrahim Faraag
- Department of Botany and Microbiology, Faculty of Science Helwan University, Cairo 11795, Egypt;
- School of Biotechnology, Badr University, Cairo 11829, Egypt
| | | | - Nashwa El-Khazragy
- Department of Clinical Pathology-Hematology, Ain Shams Medical Research Institute (MASRI), Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt;
- Department of Genetics and Molecular Biology, Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo11599, Egypt
| |
Collapse
|
7
|
Cyclocreatine Phosphate: A Novel Bioenergetic/Anti-Inflammatory Drug That Resuscitates Poorly Functioning Hearts and Protects against Development of Heart Failure. Pharmaceuticals (Basel) 2023; 16:ph16030453. [PMID: 36986552 PMCID: PMC10060003 DOI: 10.3390/ph16030453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
Irreversible myocardial injury causes the exhaustion of cellular adenosine triphosphate (ATP) contributing to heart failure (HF). Cyclocreatine phosphate (CCrP) was shown to preserve myocardial ATP during ischemia and maintain cardiac function in various animal models of ischemia/reperfusion. We tested whether CCrP administered prophylactically/therapeutically prevents HF secondary to ischemic injury in an isoproterenol (ISO) rat model. Thirty-nine rats were allocated into five groups: control/saline, control/CCrP, ISO/saline (85 and 170 mg/kg/day s.c. for 2 consecutive days), and ISO/CCrP (0.8 g/kg/day i.p.) either administrated 24 h or 1 h before ISO administration (prophylactic regimen) or 1 h after the last ISO injection (therapeutic regimen) and then daily for 2 weeks. CCrP protected against ISO-induced CK-MB elevation and ECG/ST changes when administered prophylactically or therapeutically. CCrP administered prophylactically decreased heart weight, hs-TnI, TNF-α, TGF-β, and caspase-3, as well as increased EF%, eNOS, and connexin-43, and maintained physical activity. Histology indicated a marked decrease in cardiac remodeling (fibrin and collagen deposition) in the ISO/CCrP rats. Similarly, therapeutically administered CCrP showed normal EF% and physical activity, as well as normal serum levels of hs-TnI and BNP. In conclusion, the bioenergetic/anti-inflammatory CCrP is a promising safe drug against myocardial ischemic sequelae, including HF, promoting its clinical application to salvage poorly functioning hearts.
Collapse
|
8
|
Huang G, Lu X, Duan Z, Zhang K, Xu L, Bao H, Xiong X, Lin M, Li C, Li Y, Zhou H, Luo Z, Li W. PCSK9 Knockdown Can Improve Myocardial Ischemia/Reperfusion Injury by Inhibiting Autophagy. Cardiovasc Toxicol 2022; 22:951-961. [DOI: 10.1007/s12012-022-09771-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/25/2022] [Indexed: 11/09/2022]
|
9
|
Saleh S, George J, Kott KA, Meikle PJ, Figtree GA. The Translation and Commercialisation of Biomarkers for Cardiovascular Disease—A Review. Front Cardiovasc Med 2022; 9:897106. [PMID: 35722087 PMCID: PMC9201254 DOI: 10.3389/fcvm.2022.897106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/11/2022] [Indexed: 11/19/2022] Open
Abstract
As a leading cause of mortality and morbidity worldwide, cardiovascular disease and its diagnosis, quantification, and stratification remain significant health issues. Increasingly, patients present with cardiovascular disease in the absence of known risk factors, suggesting the presence of yet unrecognized pathological processes and disease predispositions. Fortunately, a host of emerging cardiovascular biomarkers characterizing and quantifying ischaemic heart disease have shown great promise in both laboratory settings and clinical trials. These have demonstrated improved predictive value additional to widely accepted biomarkers as well as providing insight into molecular phenotypes beneath the broad umbrella of cardiovascular disease that may allow for further personalized treatment regimens. However, the process of translation into clinical practice – particularly navigating the legal and commercial landscape – poses a number of challenges. Practical and legal barriers to the biomarker translational pipeline must be further considered to develop strategies to bring novel biomarkers into the clinical sphere and apply these advances at the patient bedside. Here we review the progress of emerging biomarkers in the cardiovascular space, with particular focus on those relevant to the unmet needs in ischaemic heart disease.
Collapse
Affiliation(s)
- Soloman Saleh
- Cardiothoracic and Vascular Health, Kolling Institute of Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Jacob George
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Katharine A. Kott
- Cardiothoracic and Vascular Health, Kolling Institute of Medical Research, Sydney, NSW, Australia
- Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW, Australia
| | - Peter J. Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Gemma A. Figtree
- Cardiothoracic and Vascular Health, Kolling Institute of Medical Research, Sydney, NSW, Australia
- Department of Cardiology, Royal North Shore Hospital, Northern Sydney Local Health District, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- *Correspondence: Gemma A. Figtree
| |
Collapse
|
10
|
Role of Creatine Supplementation in Conditions Involving Mitochondrial Dysfunction: A Narrative Review. Nutrients 2022; 14:nu14030529. [PMID: 35276888 PMCID: PMC8838971 DOI: 10.3390/nu14030529] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Creatine monohydrate (CrM) is one of the most widely used nutritional supplements among active individuals and athletes to improve high-intensity exercise performance and training adaptations. However, research suggests that CrM supplementation may also serve as a therapeutic tool in the management of some chronic and traumatic diseases. Creatine supplementation has been reported to improve high-energy phosphate availability as well as have antioxidative, neuroprotective, anti-lactatic, and calcium-homoeostatic effects. These characteristics may have a direct impact on mitochondrion's survival and health particularly during stressful conditions such as ischemia and injury. This narrative review discusses current scientific evidence for use or supplemental CrM as a therapeutic agent during conditions associated with mitochondrial dysfunction. Based on this analysis, it appears that CrM supplementation may have a role in improving cellular bioenergetics in several mitochondrial dysfunction-related diseases, ischemic conditions, and injury pathology and thereby could provide therapeutic benefit in the management of these conditions. However, larger clinical trials are needed to explore these potential therapeutic applications before definitive conclusions can be drawn.
Collapse
|
11
|
Abo-Elmagd I, Mahmoud AM, Al-Ghobashy MA, Nebsen M, El Sayed NS, Nofal S, Soror SH, Todd R, Elgebaly SA. Impedimetric Sensors for Cyclocreatine Phosphate Determination in Plasma Based on Electropolymerized Poly( o-phenylenediamine) Molecularly Imprinted Polymers. ACS OMEGA 2021; 6:31282-31291. [PMID: 34841172 PMCID: PMC8613875 DOI: 10.1021/acsomega.1c05098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Cyclocreatine and its water-soluble derivative, cyclocreatine phosphate (CCrP), are potent cardioprotective drugs. Based on recent animal studies, CCrP, FDA-awarded Orphan Drug Designation, has a promising role in increasing the success rate of patients undergoing heart transplantation surgery by preserving donor hearts during transportation and improving the recovery of transplanted hearts in recipient patients. In addition, CCrP is under investigation as a promising treatment for creatine transporter deficiency, an X-linked inborn error resulting in a poor quality of life for both the patients and the caregiver. A newly designed molecularly imprinted polymer (MIP) material was fabricated by the anodic electropolymerization of o-phenylenediamine on screen-printed carbon electrodes and was successfully applied as an impedimetric sensor for CCrP determination to dramatically reduce the analysis time during both the clinical trial phases and drug development process. To enhance the overall performance of the proposed sensor, studies were performed to optimize the electropolymerization conditions, incubation time, and pH of the background electrolyte. Scanning electron microscopy, electrochemical impedance spectroscopy, and cyclic voltammetry were used to characterize the behavior of the developed ultrathin MIP membrane. The CCrP-imprinted polymer has a high recognition affinity for the template molecule because of the formation of 3D complementary cavities within the polymer. The developed MIP impedimetric sensor had good linearity, repeatability, reproducibility, and stability within the linear concentration range of 1 × 10-9 to 1 × 10-7 mol/L, with a low limit of detection down to 2.47 × 10-10 mol/L. To verify the applicability of the proposed sensor, it was used to quantify CCrP in spiked plasma samples.
Collapse
Affiliation(s)
- Ibrahim
F. Abo-Elmagd
- Bioanalysis
Research Group, School of Pharmacy, Newgiza
University, Giza 12256, Egypt
| | - Amr M. Mahmoud
- Analytical
Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Medhat A. Al-Ghobashy
- Bioanalysis
Research Group, School of Pharmacy, Newgiza
University, Giza 12256, Egypt
- Analytical
Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Central
Administration for Drug Control, Egyptian
Drug Authority (EDA), Cairo 12654, Egypt
| | - Marianne Nebsen
- Analytical
Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Nesrine S. El Sayed
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Shahira Nofal
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ain Helwan, Helwan, Cairo 11795, Egypt
| | - Sameh H. Soror
- Department
of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Ain Helwan, Helwan, Cairo 11795, Egypt
- Center
for Scientific Excellence, Helwan Structural Biology Research (HSBR),
Faculty of Pharmacy, Helwan University, Ain Helwan, Helwan, Cairo 11795, Egypt
| | - Robert Todd
- ProChem
International, LLC, Sheboygan, Wisconsin 53085-3325, United States
| | - Salwa A. Elgebaly
- Nour
Heart, Inc., Vienna, Virginia 22180, United
States
- Faculty
of Medicine, University of Connecticut, Farmington, Connecticut 06030, United States
| |
Collapse
|
12
|
Abstract
Impaired cardiac energy metabolism has been proposed as a mechanism common to different heart failure aetiologies. The energy-depletion hypothesis was pursued by several researchers, and is still a topic of considerable interest. Unlike most organs, in the heart, the creatine kinase system represents a major component of the metabolic machinery, as it functions as an energy shuttle between mitochondria and cytosol. In heart failure, the decrease in creatine level anticipates the reduction in adenosine triphosphate, and the degree of myocardial phosphocreatine/adenosine triphosphate ratio reduction correlates with disease severity, contractile dysfunction, and myocardial structural remodelling. However, it remains to be elucidated whether an impairment of phosphocreatine buffer activity contributes to the pathophysiology of heart failure and whether correcting this energy deficit might prove beneficial. The effects of creatine deficiency and the potential utility of creatine supplementation have been investigated in experimental and clinical models, showing controversial findings. The goal of this article is to provide a comprehensive overview on the role of creatine in cardiac energy metabolism, the assessment and clinical value of creatine deficiency in heart failure, and the possible options for the specific metabolic therapy.
Collapse
|
13
|
Elgebaly SA, Christenson RH, Kandil H, Ibrahim M, Rizk H, El-Khazragy N, Rashed L, Yacoub B, Eldeeb H, Ali MM, Kreutzer DL. Nourin-Dependent miR-137 and miR-106b: Novel Biomarkers for Early Diagnosis of Myocardial Ischemia in Coronary Artery Disease Patients. Diagnostics (Basel) 2021; 11:703. [PMID: 33919942 PMCID: PMC8070915 DOI: 10.3390/diagnostics11040703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Although cardiovascular imaging techniques are widely used to diagnose myocardial ischemia in patients with suspected stable coronary artery disease (CAD), they have limitations related to lack of specificity, sensitivity and "late" diagnosis. Additionally, the absence of a simple laboratory test that can detect myocardial ischemia in CAD patients, has led to many patients being first diagnosed at the time of the development of myocardial infarction. Nourin is an early blood-based biomarker rapidly released within five minutes by "reversible" ischemic myocardium before progressing to necrosis. Recently, we demonstrated that the Nourin-dependent miR-137 (marker of cell damage) and miR-106b-5p (marker of inflammation) can diagnose myocardial ischemia in patients with unstable angina (UA) and also stratify severity of ischemia, with higher expression in acute ST-segment elevation myocardial infarction (STEMI) patients compared to UA patients. Minimal baseline-gene expression levels of Nourin miRNAs were detected in healthy subjects. OBJECTIVES To determine: (1) whether Nourin miRNAs are elevated in chest pain patients with myocardial ischemia suspected of CAD, who also underwent dobutamine stress echocardiography (DSE) or ECG/Treadmill stress test, and (2) whether the elevated levels of serum Nourin miRNAs correlate with results of ECHO/ECG stress test in diagnosing CAD patients. METHODS Serum gene expression levels of miR-137, miR-106b-5p and their corresponding molecular pathway network were measured blindly in 70 enrolled subjects using quantitative real time PCR (qPCR). Blood samples were collected from: (1) patients with chest pain suspected of myocardial ischemia (n = 38) both immediately "pre-stress test" and "post-stress test" 30 min. after test termination; (2) patients with acute STEMI (n = 16) functioned as our positive control; and (3) healthy volunteers (n = 16) who, also, exercised on ECG/Treadmill stress test for Nourin baseline-gene expression levels. RESULTS (1) strong correlation was observed between Nourin miRNAs serum expression levels and results obtained from ECHO/ECG stress test in diagnosing myocardial ischemia in CAD patients; (2) positive "post-stress test" patients with CAD diagnosis showed upregulation of miR-137 by 572-fold and miR-106b-5p by 122-fold, when compared to negative "post-stress test" patients (p < 0.001); (3) similarly, positive "pre-stress test" CAD patients showed upregulation of miR-137 by 1198-fold and miR-106b-5p by 114-fold, when compared to negative "pre-stress test" patients (p < 0.001); and (4) healthy subjects had minimal baseline-gene expressions of Nourin miRNAs. CONCLUSIONS Nourin-dependent miR-137 and miR-106b-5p are promising novel blood-based biomarkers for early diagnosis of myocardial ischemia in chest pain patients suspected of CAD in outpatient clinics. Early identification of CAD patients, while patients are in the stable state before progressing to infarction, is key to providing crucial diagnostic steps and therapy to limit adverse cardiac events, improve patients' health outcome and save lives.
Collapse
Affiliation(s)
- Salwa A. Elgebaly
- Research & Development, Nour Heart, Inc., Vienna, VA 22180, USA
- Department of Surgery, UConn Health, School of Medicine, Farmington, CT 06032, USA;
| | - Robert H. Christenson
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Hossam Kandil
- Department of Cardiology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo 11562, Egypt; (H.K.); (M.I.); (H.R.); (B.Y.); (H.E.); (M.M.A.)
| | - Mohsen Ibrahim
- Department of Cardiology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo 11562, Egypt; (H.K.); (M.I.); (H.R.); (B.Y.); (H.E.); (M.M.A.)
| | - Hussien Rizk
- Department of Cardiology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo 11562, Egypt; (H.K.); (M.I.); (H.R.); (B.Y.); (H.E.); (M.M.A.)
| | - Nashwa El-Khazragy
- Department of Clinical Pathology-Hematology, Ain Shams Medical Research Institute (MASRI), Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt;
| | - Laila Rashed
- Department of Biochemistry and Molecular Biology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo 11562, Egypt;
| | - Beshoy Yacoub
- Department of Cardiology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo 11562, Egypt; (H.K.); (M.I.); (H.R.); (B.Y.); (H.E.); (M.M.A.)
| | - Heba Eldeeb
- Department of Cardiology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo 11562, Egypt; (H.K.); (M.I.); (H.R.); (B.Y.); (H.E.); (M.M.A.)
| | - Mahmoud M. Ali
- Department of Cardiology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo 11562, Egypt; (H.K.); (M.I.); (H.R.); (B.Y.); (H.E.); (M.M.A.)
| | - Donald L. Kreutzer
- Department of Surgery, UConn Health, School of Medicine, Farmington, CT 06032, USA;
- Cell & Molecular Tissue Engineering, LLC, Farmington, CT 06032, USA
| |
Collapse
|
14
|
Chang P, Niu Y, Zhang X, Zhang J, Wang X, Shen X, Chen B, Yu J. Integrative Proteomic and Metabolomic Analysis Reveals Metabolic Phenotype in Mice With Cardiac-Specific Deletion of Natriuretic Peptide Receptor A. Mol Cell Proteomics 2021; 20:100072. [PMID: 33812089 PMCID: PMC8131926 DOI: 10.1016/j.mcpro.2021.100072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/12/2021] [Accepted: 03/15/2021] [Indexed: 11/26/2022] Open
Abstract
Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) are important biological markers and cardiac function regulators. Natriuretic peptide receptor A (NPRA) binds to an ANP or BNP ligand and induces transmembrane signal transduction by elevating the intracellular cyclic guanosine monophosphate (cGMP) levels. However, the metabolic phenotype and related mechanisms induced by NPRA deletion remain ambiguous. Here, we constructed myocardial-specific NPRA deletion mice and detected the heart functional and morphological characteristics by histological analysis and explored the altered metabolic pattern and the expression patterns of proteins by liquid chromatography-mass spectrometry (LC-MS)-based omics technology. NPRA deficiency unexpectedly did not result in significant cardiac remodeling or dysfunction. However, compared with the matched littermates, NPRA-deficient mice had significant metabolic differences. Metabolomic analysis showed that the metabolite levels varied in cardiac tissues and plasma. In total, 33 metabolites were identified in cardiac tissues and 54 were identified in plasma. Compared with control mice, NPRA-deficient mice had 20 upregulated and six downregulated metabolites in cardiac tissues and 25 upregulated and 23 downregulated metabolites in plasma. Together, NPRA deficiency resulted in increased nucleotide biosynthesis and histidine metabolism only in heart tissues and decreased creatine metabolism only in plasma. Further proteomic analysis identified 136 differentially abundant proteins in cardiac tissues, including 54 proteins with higher abundance and 82 proteins with lower abundance. Among them, cytochrome c oxidase subunit 7c and 7b (Cox7c, Cox7b), ATP synthase, H+ transporting, mitochondrial Fo complex subunit F2 (ATP5J2), ubiquinol-cytochrome c reductase, complex III subunit X (Uqcr10), and myosin heavy chain 7 (Myh7) were mainly involved in related metabolic pathways. These results revealed the essential role of NPRA in metabolic profiles and may elucidate new underlying pathophysiological mechanisms of NPRA in cardiovascular diseases.
Collapse
Affiliation(s)
- Pan Chang
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Medical University, Xi'an, P.R. China
| | - Yan Niu
- Clinical Experimental Center, Xi'an International Medical Center Hospital, Xi'an, P.R. China
| | - Xiaomeng Zhang
- Clinical Experimental Center, Xi'an International Medical Center Hospital, Xi'an, P.R. China
| | - Jing Zhang
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Medical University, Xi'an, P.R. China
| | - Xihui Wang
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Medical University, Xi'an, P.R. China
| | - Xi Shen
- Clinical Experimental Center, Xi'an International Medical Center Hospital, Xi'an, P.R. China
| | - Baoying Chen
- Imaging Diagnosis and Treatment Center, Xi'an International Medical Center Hospital, Xi'an, P.R. China.
| | - Jun Yu
- Clinical Experimental Center, Xi'an International Medical Center Hospital, Xi'an, P.R. China.
| |
Collapse
|
15
|
Nourin-Associated miRNAs: Novel Inflammatory Monitoring Markers for Cyclocreatine Phosphate Therapy in Heart Failure. Int J Mol Sci 2021; 22:ijms22073575. [PMID: 33808213 PMCID: PMC8036979 DOI: 10.3390/ijms22073575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Cyclocreatine phosphate (CCrP) is a potent bioenergetic cardioprotective compound known to preserve high levels of cellular adenosine triphosphate during ischemia. Using the standard Isoproterenol (ISO) rat model of heart failure (HF), we recently demonstrated that the administration of CCrP prevented the development of HF by markedly reducing cardiac remodeling (fibrosis and collagen deposition) and maintaining normal ejection fraction and heart weight, as well as physical activity. The novel inflammatory mediator, Nourin is a 3-KDa formyl peptide rapidly released by ischemic myocardium and is associated with post-ischemic cardiac inflammation. We reported that the Nourin-associated miR-137 (marker of cell damage) and miR-106b-5p (marker of inflammation) are significantly upregulated in unstable angina patients and patients with acute myocardial infarction, but not in healthy subjects. Objectives: To test the hypothesis that Nourin-associated miR-137 and miR-106b-5p are upregulated in ISO-induced “HF rats” and that the administration of CCrP prevents myocardial injury (MI) and reduces Nourin gene expression in “non-HF rats”. Methods: 25 male Wistar rats (180–220 g) were used: ISO/saline (n = 6), ISO/CCrP (0.8 g/kg/day) (n = 5), control/saline (n = 5), and control/CCrP (0.8 g/kg/day) (n = 4). In a limited study, CCrP at a lower dose of 0.4 g/kg/day (n = 3) and a higher dose of 1.2 g/kg/day (n = 2) were also tested. The Rats were injected SC with ISO for two consecutive days at doses of 85 and 170 mg/kg/day, respectively, then allowed to survive for an additional two weeks. CCrP and saline were injected IP (1 mL) 24 h and 1 h before first ISO administration, then daily for two weeks. Serum CK-MB (U/L) was measured 24 h after the second ISO injection to confirm myocardial injury. After 14 days, gene expression levels of miR-137 and miR-106b-5p were measured in serum samples using quantitative real-time PCR (qPCR). Results: While high levels of CK-MB were detected after 24 h in the ISO/saline rats indicative of MI, the ISO/CCrP rats showed normal CK-MB levels, supporting prevention of MI by CCrP. After 14 days, gene expression profiles showed significant upregulation of miR-137 and miR-106b-5p by 8.6-fold and 8.7-fold increase, respectively, in the ISO/saline rats, “HF rats,” compared to the control/saline group. On the contrary, CCrP treatment at 0.8 g/kg/day markedly reduced gene expression of miR-137 by 75% and of miR-106b-5p by 44% in the ISO/CCrP rats, “non-HF rats,” compared to the ISO/Saline rats, “HF rats.” Additionally, healthy rats treated with CCrP for 14 days showed no toxicity in heart, liver, and renal function. Conclusions: Results suggest a role of Nourin-associated miR-137 and miR-106b-5p in the pathogenesis of HF and that CCrP treatment prevented ischemic injury in “non-HF rats” and significantly reduced Nourin gene expression levels in a dose–response manner. The Nourin gene-based mRNAs may, therefore, potentially be used as monitoring markers of drug therapy response in HF, and CCrP—as a novel preventive therapy of HF due to ischemia.
Collapse
|
16
|
Elgebaly SA, Christenson RH, Kandil H, El-Khazragy N, Rashed L, Yacoub B, Eldeeb H, Ali M, Sharafieh R, Klueh U, Kreutzer DL. Nourin-Dependent miR-137 and miR-106b: Novel Early Inflammatory Diagnostic Biomarkers for Unstable Angina Patients. Biomolecules 2021; 11:368. [PMID: 33670982 PMCID: PMC7997347 DOI: 10.3390/biom11030368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/19/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Currently, no blood biomarkers exist that can diagnose unstable angina (UA) patients. Nourin is an early inflammatory mediator rapidly released within 5 min by reversible ischemic myocardium, and if ischemia persists, it is also released by necrosis. Nourin is elevated in acute coronary syndrome (ACS) patients but not in symptomatic noncardiac and healthy subjects. Recently, circulating microRNAs (miRNAs) have been established as markers of disease, including cardiac injury and inflammation. OBJECTIVES To profile and validate the potential diagnostic value of Nourin-dependent miR-137 (marker of cell damage) and miR-106b-5p (marker of inflammation) as early biomarkers in suspected UA patients and to investigate the association of their target and regulating genes. METHODS Using Nourin amino acid sequence, an integrated bioinformatics analysis was conducted. Analysis indicated that Nourin is a direct target for miR-137 and miR-106b-5p in myocardial ischemic injury. Two linked molecular networks of lncRNA/miRNAs/mRNAs were also retrieved, including CTB89H12.4/miR-137/FTHL-17 and CTB89H12.4/miR-106b-5p/ANAPC11. Gene expression profiling was assessed in serum samples collected at presentation to an emergency department (ED) from: (1) UA patients (n = 30) (confirmed by invasive coronary angiography with stenosis greater than 50% and troponin level below the clinical decision limit); (2) patients with acute ST elevation myocardial infarction (STEMI) (n = 16) (confirmed by persistent ST-segment changes and elevated troponin level); and 3) healthy subjects (n = 16). RESULTS Gene expression profiles showed that miR-137 and miR-106b-5p were significantly upregulated by 1382-fold and 192-fold in UA compared to healthy, and by 2.5-fold and 4.6-fold in STEMI compared to UA, respectively. Healthy subjects showed minimal expression profile. Receiver operator characteristics (ROC) analysis revealed that the two miRNAs were sensitive and specific biomarkers for assessment of UA and STEMI patients. Additionally, Spearman's correlation analysis revealed a significant association of miRNAs with the associated mRNA targets and the regulating lncRNA. CONCLUSIONS Nourin-dependent gene expression of miR-137 and miR-106b-5p are novel blood-based biomarkers that can diagnose UA and STEMI patients at presentation and stratify severity of myocardial ischemia, with higher expression in STEMI compared to UA. Early diagnosis of suspected UA patients using the novel Nourin biomarkers is key for initiating guideline-based therapy that improves patients' health outcomes.
Collapse
Affiliation(s)
- Salwa A. Elgebaly
- Research & Development, Nour Heart, Inc., Vienna, VA 22180, USA
- Department of Surgery, School of Medicine, UConn Health, Farmington, CT 06032, USA; (R.S.); (D.L.K.)
| | - Robert H. Christenson
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Hossam Kandil
- Department of Cardiology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo 11562, Egypt; (H.K.); (B.Y.); (H.E.); (M.A.)
| | - Nashwa El-Khazragy
- Department of Clinical Pathology-Hematology, Ain Shams Medical Research Institute (MASRI), Faculty of Medicine, Ain Shams University, Cairo 11566, Egyp;
| | - Laila Rashed
- Department of Biochemistry and Molecular Biology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo 11562, Egypt;
| | - Beshoy Yacoub
- Department of Cardiology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo 11562, Egypt; (H.K.); (B.Y.); (H.E.); (M.A.)
| | - Heba Eldeeb
- Department of Cardiology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo 11562, Egypt; (H.K.); (B.Y.); (H.E.); (M.A.)
| | - Mahmoud Ali
- Department of Cardiology, Kasr Alainy Faculty of Medicine, Cairo University, Cairo 11562, Egypt; (H.K.); (B.Y.); (H.E.); (M.A.)
| | - Roshanak Sharafieh
- Department of Surgery, School of Medicine, UConn Health, Farmington, CT 06032, USA; (R.S.); (D.L.K.)
- Cell & Molecular Tissue Engineering, LLC Farmington, CT 06032, USA;
| | - Ulrike Klueh
- Cell & Molecular Tissue Engineering, LLC Farmington, CT 06032, USA;
- Integrative Biosciences Center (IBio), Department of Biomedical Engineering, Wayne State University, Detroit, MI 48202, USA
| | - Donald L. Kreutzer
- Department of Surgery, School of Medicine, UConn Health, Farmington, CT 06032, USA; (R.S.); (D.L.K.)
- Cell & Molecular Tissue Engineering, LLC Farmington, CT 06032, USA;
| |
Collapse
|
17
|
AM1241 alleviates myocardial ischemia-reperfusion injury in rats by enhancing Pink1/Parkin-mediated autophagy. Life Sci 2021; 272:119228. [PMID: 33607150 DOI: 10.1016/j.lfs.2021.119228] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 01/02/2023]
Abstract
AIMS The purpose of this study was to reveal the therapeutic efficacy and underlying mechanism of cannabinoid type 2 receptor agonist (AM1241) on myocardial ischemia-reperfusion injury (MIRI) in rats. MAIN METHODS We established a rat myocardial ischemia/reperfusion (I/R) model and H9c2 hypoxia/reoxygenation (H/R) model. ELISA was used to determine the concentrations of cardiac troponin I (cTnI), creatine kinase-MB (CK-MB), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) in plasma. EB/TTC staining was performed to observe the myocardial infarct size. Besides, the pathological changes of myocardial tissue were identified via H&E staining and Masson's trichrome staining. TUNEL assay was performed to examine myocardial apoptosis. Then, the protein expression of Pink1, Parkin and autophagy-related markers (Beclin-1, P62 and LC3) were detected by Western blot, and autophagy was evaluated by Mitotracker staining. KEY FINDINGS The results of EB/TTC staining, H&E staining, Masson's trichrome staining and cardiac enzymes measuring showed that AM1241 treatment significantly diminished infarct size, the structural abnormalities and the activities of cardiac enzymes (cTnI, CK-MB, AST and LDH). AM1241 also significantly reduced the number of TUNEL-positive cells induced by I/R in a dose-dependent manner. Furthermore, AM1241 activated Pink1/Parkin signaling pathway and upregulated autophagy level. SIGNIFICANCE AM1241 exerts a protective effect against MIRI in rats by inducing autophagy through the activation of Pink1/Parkin pathway.
Collapse
|