1
|
Khan A, Dawar P, De S. Thiourea compounds as multifaceted bioactive agents in medicinal chemistry. Bioorg Chem 2025; 158:108319. [PMID: 40058221 DOI: 10.1016/j.bioorg.2025.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
Microbial resistance (MR) and cancer are global healthcare pitfalls that have caused millions of deaths and pose a significant pharmaceutical challenge, with clinical cases increasing. Thioureas are preferred structures in medicinal chemistry, chemosensors, and organic synthesis platforms. In fact, thiourea (TU) moieties serve as a common framework for several medications and bioactive substances, demonstrating a wide range of therapeutic and pharmacological accomplishments. The integration of the thiourea moiety into a diverse range of organic molecules has resulted in very flexible compounds with widespread uses in medicinal chemistry. Moreover, for over a century, TU and its metal complexes have been characterized for their biological activity. Finally, we provide an assessment and future outlook of different organo-thiourea derivatives, from the very beginning to the most recent discoveries in medicinal activity.
Collapse
Affiliation(s)
- Adeeba Khan
- Department of Chemistry, Organic Chemistry Lab, Manipal University Jaipur, Jaipur, Rajasthan 303007, India
| | - Palak Dawar
- Department of Chemistry, Organic Chemistry Lab, Manipal University Jaipur, Jaipur, Rajasthan 303007, India
| | - Suranjan De
- Department of Chemistry, Organic Chemistry Lab, Manipal University Jaipur, Jaipur, Rajasthan 303007, India.
| |
Collapse
|
2
|
Nammalwar B, Bunce RA. Recent Advances in Pyrimidine-Based Drugs. Pharmaceuticals (Basel) 2024; 17:104. [PMID: 38256937 PMCID: PMC10820437 DOI: 10.3390/ph17010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Pyrimidines have become an increasingly important core structure in many drug molecules over the past 60 years. This article surveys recent areas in which pyrimidines have had a major impact in drug discovery therapeutics, including anti-infectives, anticancer, immunology, immuno-oncology, neurological disorders, chronic pain, and diabetes mellitus. The article presents the synthesis of the medicinal agents and highlights the role of the biological target with respect to the disease model. Additionally, the biological potency, ADME properties and pharmacokinetics/pharmacodynamics (if available) are discussed. This survey attempts to demonstrate the versatility of pyrimidine-based drugs, not only for their potency and affinity but also for the improved medicinal chemistry properties of pyrimidine as a bioisostere for phenyl and other aromatic π systems. It is hoped that this article will provide insight to researchers considering the pyrimidine scaffold as a chemotype in future drug candidates in order to counteract medical conditions previously deemed untreatable.
Collapse
Affiliation(s)
- Baskar Nammalwar
- Vividion Therapeutics, 5820 Nancy Ridge Drive, San Diego, CA 92121, USA;
| | - Richard A. Bunce
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
3
|
Farooq S, Ngaini Z. Synthesis of Benzalacetophenone Based Isoxazoline and Isoxazole Derivatives. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220408120350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
The demand for natural product based drugs with less cost and efficient procedures has become a challenge to researchers. Benzalacetophenone is a natural product based species that is modified into numerous heterocyclic compounds including isoxazoline and isoxazole derivatives. The utility of isoxazoline and oxazole derivatives has been increased for the synthesis of the new and effective chemical entities to serve medicinal chemistry in the past few years. Isoxazoline and isoxazole are fascinating classes of heterocyclic compounds, which belong to N- and O-heterocycles, and are widely used as precursors for the development of drugs. This review highlights the recent work for the synthesis of mono and bis isoxazoline and isoxazole derivatives using stable benzalacetophenone and functionalization of isoxazoline and isoxazole, along with the prevailing biological properties.
Collapse
Affiliation(s)
- Saba Farooq
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Zainab Ngaini
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| |
Collapse
|
4
|
Synthesis, Molecular Structure, Thermal and Spectroscopic Analysis of a Novel Bromochalcone Derivative with Larvicidal Activity. CRYSTALS 2022. [DOI: 10.3390/cryst12040440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Chalcones belong to the flavonoids family and are natural compounds which show promising larvicidal property against Aedes aegypti larvae. Aiming to obtain a synthetic chalcone derivative with high larvicidal activity, herein, a bromochalcone derivative, namely (E)-3-(4-butylphenyl)-1-(4-bromophenyl)-prop-2-en-1-one (BBP), was designed, synthesized and extensively characterized by 1H- and 13C- nuclear magnetic resonance (NMR), infrared (IR), Raman spectroscopy, mass spectrometry (MS), ultraviolet–visible spectroscopy (UV-Vis), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and X-ray diffraction. Further, the quantum mechanics calculations implemented at the B3LYP/6–311+G(d)* level of the theory indicate that the supramolecular arrangement was stabilized by C–H⋯O and edge-to-face C–H⋯π interactions. The EGAP calculated (3.97 eV) indicates a good reactivity value compared with other similar chalcone derivatives. Furthermore, the synthesized bromochalcone derivative shows promising larvicidal activity (mortality up to 80% at 57.6 mg·L−1) against Ae. aegypti larvae.
Collapse
|
5
|
Bala D, Jinga LI, Popa M, Hanganu A, Voicescu M, Bleotu C, Tarko L, Nica S. Design, Synthesis, and Biological Evaluation of New Azulene-Containing Chalcones. MATERIALS 2022; 15:ma15051629. [PMID: 35268860 PMCID: PMC8911025 DOI: 10.3390/ma15051629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/18/2022] [Accepted: 02/18/2022] [Indexed: 01/07/2023]
Abstract
Azulene-containing chalcones have been synthesized via Claisen-Schmidt condensation reaction. Their chemical structure has been established by spectroscopic methods where the 1H-NMR spectra suggested that the title chalcones were geometrically pure and configured trans (J = 15 Hz). The influence of functional groups from azulene-containing chalcones on the biological activity of the 2-propen-1-one unit was investigated for the first time. This study presents optical and fluorescent investigations, QSAR studies, and biological activity of 10 novel compounds. These chalcones were evaluated for their antimicrobial activity against Gram-positive and Gram-negative bacteria. The results revealed that most of the synthesized compounds showed inhibition against Gram-negative microorganisms, independent of the substitution of azulene scaffold. Instead, all azulene-containing chalcones exhibited good antifungal activity against Candida parapsilosis, with MIC values ranging between 0.156 and 0.312 mg/mL. The most active compound was chalcone containing azulene moieties on both sides of the 2-propene-1-one bond, exhibiting good activity against both bacteria-type strains and good antifungal activity. This antifungal activity combined with low toxicity makes azulene-containing chalcones a new class of bioorganic compounds.
Collapse
Affiliation(s)
- Daniela Bala
- Faculty of Chemistry, Department of Physical-Chemistry, University of Bucharest, 4-12 Bvd. Regina Elisabeta, 030018 Bucharest, Romania;
| | - Luiza-Izabela Jinga
- “C. D. Nenitzescu” Institute of Organic Chemistry, Romanian Academy, 202B Spl. Independentei, 060023 Bucharest, Romania; (L.-I.J.); (A.H.); (L.T.)
| | - Marcela Popa
- Research Institute of the University of Bucharest (ICUB), 36-46 Bvd. M. Kogalniceanu, 50107 Bucharest, Romania; (M.P.); (C.B.)
- Faculty of Biology, Department of Botany and Microbiology, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania
| | - Anamaria Hanganu
- “C. D. Nenitzescu” Institute of Organic Chemistry, Romanian Academy, 202B Spl. Independentei, 060023 Bucharest, Romania; (L.-I.J.); (A.H.); (L.T.)
- Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Research Centre of Applied Organic Chemistry, University of Bucharest, 90-92 Panduri Street, 050663 Bucharest, Romania
| | - Mariana Voicescu
- Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania;
| | - Coralia Bleotu
- Research Institute of the University of Bucharest (ICUB), 36-46 Bvd. M. Kogalniceanu, 50107 Bucharest, Romania; (M.P.); (C.B.)
- Faculty of Biology, Department of Botany and Microbiology, University of Bucharest, 1-3 Aleea Portocalelor, 060101 Bucharest, Romania
- Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Avenue, 030317 Bucharest, Romania
| | - Laszlo Tarko
- “C. D. Nenitzescu” Institute of Organic Chemistry, Romanian Academy, 202B Spl. Independentei, 060023 Bucharest, Romania; (L.-I.J.); (A.H.); (L.T.)
| | - Simona Nica
- “C. D. Nenitzescu” Institute of Organic Chemistry, Romanian Academy, 202B Spl. Independentei, 060023 Bucharest, Romania; (L.-I.J.); (A.H.); (L.T.)
- Correspondence:
| |
Collapse
|
6
|
Farooq S, Ngaini Z, Daud AI, Khairul WM. Microwave Assisted Synthesis and Antimicrobial Activities of Carboxylpyrazoline Derivatives: Molecular Docking and DFT Influence in Bioisosteric Replacement. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1937236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Saba Farooq
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Zainab Ngaini
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Adibah Izzati Daud
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Padang Besar, Perlis, Malaysia
| | - Wan M. Khairul
- Faculty of Marine Science and Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
7
|
Villena J, Montenegro I, Said B, Werner E, Flores S, Madrid A. Ultrasound assisted synthesis and cytotoxicity evaluation of known 2',4'-dihydroxychalcone derivatives against cancer cell lines. Food Chem Toxicol 2021; 148:111969. [PMID: 33421463 DOI: 10.1016/j.fct.2021.111969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/28/2020] [Accepted: 01/03/2021] [Indexed: 01/28/2023]
Abstract
This work reports on the development of an efficient and ecofriendly ultrasound assisted method for the high yield synthesis (70.0-94.0%) of eighteen oxyalkylated derivatives of 2',4'-dihydroxychalcone. Synthesized compounds were subjected to in vitro biological assays against HT-29 (colorectal), MCF-7 (breast), and PC-3 (prostate) human tumor cell lines, these cell lines are among the ten most aggressive malignancies diagnosed in the world. Cytotoxicity evaluations showed that four of the synthesized compounds exhibited moderate to very high toxic activity against MCF-7 (IC50 = 8.4-34.3 μM) and PC-3 (IC50 = 9.3-29.4 μM) - comparable to 5-fluorouracil (IC50 16.4-22.3 μM). The same compounds only showed moderate activity against HT-29 (IC50 15.3-36.3 μM), closer to daunorubicin (IC50 15.1 μM). Next, although selectivity index (SI) of compounds was weak, compound 18 exhibited a remarkable and selective cytotoxic activity (5.8-10.57) against cancer cells. Outside of these, most compounds significantly reduced cell survival, increased reactive oxygen species (ROS) and caspase activity, and decreased mitochondrial membrane permeability. In this sense, a portion of anti-proliferative activity is due to apoptosis. Notwithstanding, due to its remarkable response, chalcone 18 may be a potential alternative as a chemotherapeutic anti-carcinogen.
Collapse
Affiliation(s)
- Joan Villena
- Centro de Investigaciones Biomedicas (CIB), Facultad de Medicina, Campus de la Salud, Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar, 2520000, Chile
| | - Iván Montenegro
- Escuela de Obstetricia y Puericultura, Facultad de medicina, Campus de la Salud, Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar, 2520000, Chile
| | - Bastian Said
- Departamento de Química, Universidad Técnica Federico Santa María, Av. Santa María 6400, Vitacura, 7630000, Santiago, Chile
| | - Enrique Werner
- Departamento De Ciencias Básicas, Campus Fernando May, Universidad del Bío-Bío, Avda. Andrés Bello 720, Casilla 447, Chillán, 3780000, Chile
| | - Susana Flores
- Laboratorio de Productos Naturales y Síntesis Orgánica (LPNSO), Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Playa Ancha, Valparaíso, 2340000, Chile
| | - Alejandro Madrid
- Laboratorio de Productos Naturales y Síntesis Orgánica (LPNSO), Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Playa Ancha, Valparaíso, 2340000, Chile.
| |
Collapse
|
8
|
Sonochemical Synthesis of 2'-Hydroxy-Chalcone Derivatives with Potential Anti-Oomycete Activity. Antibiotics (Basel) 2020; 9:antibiotics9090576. [PMID: 32899705 PMCID: PMC7560025 DOI: 10.3390/antibiotics9090576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
This work reports on the synthesis of eight new 2′-hydroxy-chalcones with potential anti-phytopathogenic applications in agroindustry, AMONG others, via Claisen–Schmidt condensation and ultrasound assisted reaction. Assays showed three chalcones with allyl moieties strongly inhibited growth of phytopathogenic oomycete Phytophthora infestans; moreover, compound 8a had a half maximal effective concentration (EC50) value (32.5 µg/mL) similar to that of metalaxyl (28.6 µg/mL). A software-aided quantitative structure–activity relationship (QSAR) analysis of the whole series suggests that the structural features of these new chalcones—namely, the fluoride, hydroxyl, and amine groups over the carbon 3′ of the chalcone skeleton—increase anti-oomycete activity.
Collapse
|
9
|
Farooq S, Ngaini Z. Synthesis, Molecular Docking and Antimicrobial Activity of α, β‐Unsaturated Ketone Exchange Moiety for Chalcone and Pyrazoline Derivatives. ChemistrySelect 2020. [DOI: 10.1002/slct.202002278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Saba Farooq
- Faculty of Resource Science and Technology Universiti Malaysia Sarawak 94300 Kota Samarahan Sarawak Malaysia
| | - Zainab Ngaini
- Faculty of Resource Science and Technology Universiti Malaysia Sarawak 94300 Kota Samarahan Sarawak Malaysia
| |
Collapse
|
10
|
Werner E, Montenegro I, Said B, Godoy P, Besoain X, Caro N, Madrid A. Synthesis and Anti- Saprolegnia Activity of New 2',4'-Dihydroxydihydrochalcone Derivatives. Antibiotics (Basel) 2020; 9:antibiotics9060317. [PMID: 32532060 PMCID: PMC7344530 DOI: 10.3390/antibiotics9060317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 11/16/2022] Open
Abstract
In the present study, seven 2',4'-dihydroxydihydrochalcone derivatives (compounds 3-9) were synthesized and their capacity as anti-Saprolegnia agents were evaluated against Saprolegnia parasitica, S. australis, S. diclina. Derivative 9 showed the best activity against the different strains, with minimum inhibitory concentration (MIC) and minimum oomyceticidal concentration (MOC) values between 100-175 μg/mL and 100-200 μg/mL, respectively, compared with bronopol and fluconazole as positive controls. In addition, compound 9 caused damage and disintegration cell membrane of all Saprolegnia strains over the action of commercial controls.
Collapse
Affiliation(s)
- Enrique Werner
- Departamento de Ciencias Básicas, Campus Fernando May, Universidad del Bío-Bío. Avda. Andrés Bello 720, casilla 447, Chillán 3780000, Chile;
| | - Iván Montenegro
- Escuela de Obstetricia y Puericultura, Centro de Investigaciones Biomedicas (CIB), Facultad de medicina, Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar 2520000, Chile;
| | - Bastian Said
- Departamento de Química, Universidad Técnica Federico Santa María, Av. Santa María 6400, Vitacura 7630000, Santiago, Chile;
| | - Patricio Godoy
- Instituto de Microbiología Clínica, Facultad de Medicina, Universidad Austral de Chile, Los Laureles s/n, Isla Teja, Valdivia 5090000, Chile;
| | - Ximena Besoain
- Escuela de Agronomía Pontificia Universidad Católica de Valparaíso, Quillota, SanFrancisco s/n La Palma, Quillota 2260000, Chile;
| | - Nelson Caro
- Centro de Investigación Australbiotech, Universidad Santo Tomás, Avda. Ejército 146, Santiago 8320000, Chile;
| | - Alejandro Madrid
- Laboratorio de Productos Naturales y Síntesis Orgánica (LPNSO), Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2340000, Chile
- Correspondence: ; Tel.: +56-032-250-0526
| |
Collapse
|
11
|
Farooq S, Ngaini Z. One-Pot and Two-Pot Synthesis of Chalcone Based Mono and Bis-Pyrazolines. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151416] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Russo A, Cardile V, Avola R, Graziano A, Montenegro I, Said B, Madrid A. Isocordoin analogues promote apoptosis in human melanoma cells via Hsp70. Phytother Res 2019; 33:3242-3250. [PMID: 31489735 DOI: 10.1002/ptr.6498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022]
Abstract
Isocordin 1 and a series of 4-oxyalkyl-isocordoin analogues 2-8 were evaluated for their cytotoxicity effect against human melanoma cells (A2058). Analogues 4, 5, and 6 showed a higher inhibitory activity with IC50 values of 12.91 ± 0.031, 24.88 ± 0.013, and 11.62 ± 0.017, respectively. These analogues, 4, 5, and 6, also induced an apoptotic response at 12.5- and 25-μM concentrations. They inhibited the expression of antiapoptotic proteins Bcl-2 and Hsp70, a critical factor that promotes tumour cell survival. In contrast, Bax and caspase-9 expression, and caspase-3 enzyme resulted activated. These results were correlated to a DNA fragmentation typical of apoptosis and an increase of intracellular reactive oxygen species (ROS) levels. Alternatively, at higher concentration (50 μM), when the capacity of the cells to sustain Hsp70 synthesis is reduced, our results seem to indicate that necrosis was induced by a further increase in ROS production. Therefore, the central finding in the present study is that these molecules downregulates Hsp70 expression. Altogether, these results suggest that 4-oxyalkyl-isocordoin analogues 4, 5, and 6 deserve to be deeply investigated for a possible application as Hsp70 inhibitor in the management of melanoma.
Collapse
Affiliation(s)
- Alessandra Russo
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosanna Avola
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Adriana Graziano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Iván Montenegro
- Escuela de Obstetricia y Puericultura, Facultad de Medicina, Campus de la Salud, Universidad de Valparaíso, Viña del Mar, Chile
| | - Bastian Said
- Departamento de Química, Universidad Técnica Federico Santa María, Santiago, Chile
| | - Alejandro Madrid
- Laboratorio de Productos Naturales y Síntesis Orgánica (LPNSO), Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso, Chile
| |
Collapse
|
13
|
Yu B, Liu H, Kong X, Chen X, Wu C. Synthesis of new chalcone-based homoserine lactones and their antiproliferative activity evaluation. Eur J Med Chem 2019; 163:500-511. [DOI: 10.1016/j.ejmech.2018.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 01/13/2023]
|
14
|
Structure-Activity Relationship of Dialkoxychalcones to Combat Fish Pathogen Saprolegnia australis. Molecules 2018; 23:molecules23061377. [PMID: 29875340 PMCID: PMC6100462 DOI: 10.3390/molecules23061377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 05/30/2018] [Accepted: 06/03/2018] [Indexed: 12/04/2022] Open
Abstract
To investigate the anti-Saprolegnia activities of chalconic compounds, nine dialkoxychalcones 2–10, along with their key building block 2′,4′-dihydroxychalcone 1, were evaluated for their potential oomycide activities against Saprolegnia australis strains. The synthesis afforded a series of O-alkylated derivatives with typical chalcone skeletons. Compounds 4–10 were reported for the first time. Interestingly, analogue 8 with the new scaffold demonstrated remarkable in vitro growth-inhibitory activities against Saprolegnia strains, displaying greater anti-oomycete potency than the standard drugs used in the assay, namely fluconazole and bronopol. In contrast, a dramatic loss of activity was observed for O-alkylated derivatives 2, 3, 6, and 7. These findings have highlighted the therapeutic potential of the natural compound 1 scaffold to be exploitable as a drug lead with specific activity against various Saprolegnia strains.
Collapse
|
15
|
Montenegro I, Madrid A. Synthesis of dihydroisorcordoin derivatives and their in vitro anti-oomycete activities. Nat Prod Res 2018; 33:1214-1217. [PMID: 29620446 DOI: 10.1080/14786419.2018.1460828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A series of novel dihydrochalcone derivatives 2-7 were synthesized from dihydroisorcordoin 1 which was isolated from the aerial parts of Adesmia balsamica. The structures of all compounds were confirmed by 1H NMR, 13C NMR, and HRMS. Their anti-oomycete activity was evaluated in vitro against Saprolegnia parasitica and Saprolegnia diclina. Some of the newly synthesized compounds exhibited better anti-oomycete activities at low values compared with bronopol and fluconazole as positive controls. Among them, compound 7 exhibited strong activity, with minimum inhibitory concentration and minimum oomyceticidal concentration values of 75 and 100 μg/mL, respectively.
Collapse
Affiliation(s)
- Iván Montenegro
- a Escuela de Obstetricia y Puericultura, Facultad de medicina, Campus de la Salud , Universidad de Valparaíso , Viña del Mar , Chile
| | - Alejandro Madrid
- b Departamento de Química, Facultad de Ciencias Naturales y Exactas , Universidad de Playa Ancha , Valparaíso , Chile
| |
Collapse
|
16
|
Abstract
The search for lead product with beneficial pharmacological properties has become a great challenge and costly. Extraction and synthetic modification of bioactive compounds from natural resources has gained great attention and is cost effective. In this study, kojic acid was produced from fungal fermentation, using sago waste as substrate, and chemically incorporated with chalcones and azobenzene to form a series of kojic ester derivatives and evaluated for antibacterial activities. Kojic ester bearing halogenated chalcone demonstrated active inhibition against Staphylococcus aureus compared to that of standard ampicillin. The inhibition increased as the electronegativity of halogens decreased, while incorporation of azobenzene derivatives on kojic acid backbone demonstrated fair antibacterial activity against Escherichia coli with minimum inhibitory concentration (MIC) of 190–330 ppm. The presence of C=C and N=N reactive moieties in both chalcone and azo molecules contributed to the potential biological activities of the kojic acid ester.
Collapse
|
17
|
Abd Halim AN, Ngaini Z. Synthesis and characterization of halogenated bis(acylthiourea) derivatives and their antibacterial activities. PHOSPHORUS SULFUR 2017. [DOI: 10.1080/10426507.2017.1315421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ainaa Nadiah Abd Halim
- Department of Chemistry, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Zainab Ngaini
- Department of Chemistry, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| |
Collapse
|
18
|
Novel Synthetic Monothiourea Aspirin Derivatives Bearing Alkylated Amines as Potential Antimicrobial Agents. J CHEM-NY 2017. [DOI: 10.1155/2017/2378186] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A new series of aspirin bearing alkylated amines moieties 1–12 were synthesised by reacting isothiocyanate with a series of aniline derivatives in overall yield of 16–56%. The proposed structures of all the synthesised compounds were confirmed using elemental analysis, FTIR, and 1H and 13C NMR spectroscopy. All compounds were evaluated for antibacterial activities against E. coli and S. aureus via turbidimetric kinetic and Kirby Bauer disc diffusion method. Compound 5 bearing meta -CH3 substituent showed the highest relative inhibition zone diameter against tested bacteria compared to ortho and para substituent. Furthermore, aspirin derivatives bearing shorter chains exhibited better bacterial inhibition than longer alkyl chains.
Collapse
|
19
|
Synthesis and Bacteriostatic Activities of Bis(thiourea) Derivatives with Variable Chain Length. J CHEM-NY 2016. [DOI: 10.1155/2016/2739832] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A series of 1,4-bis(decoxyphenyl)carbamothioyl-terephthalamide derivatives was successfully synthesised by reaction of benzene-1,4-dicarbonyl isothiocyanate intermediates with long alkyl chain. The alkylation was performed via Williamson etherification of 4-acetamidophenol with bromoalkanes. The synthesised bis(thiourea) derivatives differed in the chain length, CnH2n+1, wheren=10, 12, and 14. The structures of all compounds were characterised by elemental CHN analysis, IR,1H, and13C NMR spectroscopies. Bacteriostatic activities of bis(thiourea derivatives which consisted of two folds of N-H, C=O, and C=S and long alkyl chain substituents were carried out against Gram-negative bacteria (Escherichia coli, ATCC 25922) via turbidimetric kinetic method. Bis(thiourea) derivatives withn=10andn=12displayed excellent activity againstE. coliwith MIC of 135 µg/mL and 145 µg/mL, respectively, while bis(thiourea) derivatives withn=14acted as cutoff point with no antibacterial properties. Similar trend was observed in binding affinity to the active site of enoyl ACP reductase (FabI), which demonstrated binding free energy of-5.3 Kcal/mol and-4.9and-4.8 Kcal/mol, respectively.
Collapse
|
20
|
Usta A, Öztürk E, Beriş FŞ. Microwave-assisted preparation of azachalcones and their N-alkyl derivatives with antimicrobial activities. Nat Prod Res 2014; 28:483-7. [PMID: 24571646 DOI: 10.1080/14786419.2013.879472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Two new azachalcones were prepared by both Claisen-Schmidt condensation and a simple environmentally trendy microwave-assisted method. Ten new N-alkyl (C6,8,10,12,14)-substituted azachalconium bromides (3a-e, 4a-e) were prepared from compounds 1 and 2 with corresponding alkyl halides. The antimicrobial activities of all the compounds were tested against Enterococcus faecalis, Yersinia pseudotuberculosis, Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus micro-organisms.
Collapse
Affiliation(s)
- Asu Usta
- a Department of Chemistry, Faculty of Art and Science , Recep Tayyip Erdog˘an University , 53100 Rize , Turkey
| | | | | |
Collapse
|