1
|
Alkhalidy H, Al-Nabulsi AA, Al-Taher M, Osaili T, Olaimat AN, Liu D. Date (Phoenix dactylifera L.) seed oil is an agro-industrial waste with biopreservative effects and antimicrobial activity. Sci Rep 2023; 13:17142. [PMID: 37816813 PMCID: PMC10564903 DOI: 10.1038/s41598-023-44251-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023] Open
Abstract
Antimicrobial resistant (AMR) infections are a leading health threat globally. Previous literature has underscored the farm-to-fork continuum as a potential focal point for the emergence and spread of AMR. In the present study, date (Phoenix dactylifera L.) seed oil was investigated for its chemical composition and antimicrobial activity against common foodborne pathogens including Escherichia coli O157:H7, Salmonella enteritidis, Salmonella typhimurium, Listeria monocytogenes, and Staphylococcus aureus in vitro, and in ultra-high-temperature (UHT) milk as a food model at storage temperatures of 37 °C (24 h) and 10 °C (7 days). GC-MS analysis of the seed oil revealed 20 compounds, with octadecane (52.2-55.4%) as the major constituent, and the fatty acid analysis revealed 17 fatty acids, with oleic acid (42.3-43.1%) as the main constituent, followed by lauric acid (19.8-20.3%). The antimicrobial activity of date seed oil was determined using the microdilution method. A significant inhibition against gram-negative bacteria was noted in microbiological media and UHT milk, with a log reduction ranging from 4.3 to 6.7 (at 37 °C/24 h) and 5.7 to 7.2 (at 10 °C/7 days), respectively, at oil concentrations ranging between 10 and 15 µl/ml. The oil showed a similar significant inhibitory effect against St. aureus in the microbiological media (2.0-6.0 log reduction), whereas the inhibitory effect against L. monocytogenes was not statistically significant, with a maximum log reduction of 0.64 achieved at a concentration of 10 µl/ml. AFM imaging of the bacteria showed that oil treatment led to morphological changes in the bacteria including the formation of distorted shapes, surface blebs, indentations, stiffness, and swelling. Present findings suggest that date seed oil can be a promising by-product with potential antimicrobial activity and a food preservative.
Collapse
Affiliation(s)
- Hana Alkhalidy
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan.
| | - Anas A Al-Nabulsi
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Marah Al-Taher
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Tareq Osaili
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, The University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Amin N Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
2
|
Budama-Kilinc Y, Gok B, Cetin Aluc C, Kecel-Gunduz S. In vitro and in silico evaluation of the design of nano-phyto-drug candidate for oral use against Staphylococcus aureus. PeerJ 2023; 11:e15523. [PMID: 37309371 PMCID: PMC10257901 DOI: 10.7717/peerj.15523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 05/17/2023] [Indexed: 06/14/2023] Open
Abstract
Onopordum acanthium is a medicinal plant with many important properties, such as antibacterial, anticancer, and anti-hypotensive properties. Although various studies reported the biological activities of O. acanthium, there is no study on its nano-phyto-drug formulation. The aim of this study is to develop a candidate nano-drug based on phytotherapeutic constituents and evaluate its efficiency in vitro and in silico. In this context, poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) of O. acanthium extract (OAE) were synthesized and characterized. It was determined that the average particle size of OAE-PLGA-NPs was 214.9 ± 6.77 nm, and the zeta potential was -8.03 ± 0.85 mV, and PdI value was 0.064 ± 0.013. The encapsulation efficiency of OAE-PLGA-NPs was calculated as 91%, and the loading capacity as 75.83%. The in vitro drug release study showed that OAE was released from the PLGA NPs with 99.39% over the 6 days. Furthermore, the mutagenic and cytotoxic activity of free OAE and OAE-PLGA-NPs were evaluated by the Ames test and MTT test, respectively. Although 0.75 and 0.37 mg/mL free OAE concentrations caused both frameshift mutation and base pair substitution (p < 0.05), the administered OAE-PLGA NP concentrations were not mutagenic. It was determined with the MTT analysis that the doses of 0.75 and 1.5 mg/mL of free OAE had a cytotoxic effect on the L929 fibroblast cell line (p < 0.05), and OAE-PLGA-NPs had no cytotoxic effect. Moreover, the interaction between the OAE and S. aureus was also investigated using the molecular docking analysis method. The molecular docking and molecular dynamics (MD) results were implemented to elucidate the S. aureus MurE inhibition potential of OAE. It was shown that quercetin in the OAE content interacted significantly with the substantial residues in the catalytic pocket of the S. aureus MurE enzyme, and quercetin performed four hydrogen bond interactions corresponding to a low binding energy of -6.77 kcal/mol with catalytic pocket binding residues, which are crucial for the inhibition mechanism of S. aureus MurE. Finally, the bacterial inhibition values of free OAE and OAE-PLGA NPs were determined against S. aureus using a microdilution method. The antibacterial results showed that the inhibition value of the OAE-PLGA NPs was 69%. In conclusion, from the in vitro and in silico results of the nano-sized OAE-PLGA NP formulation produced in this study, it was evaluated that the formulation may be recommended as a safe and effective nano-phyto-drug candidate against S. aureus.
Collapse
Affiliation(s)
- Yasemin Budama-Kilinc
- Bioengineering Department, Yildiz Technical University, Istanbul, Turkey
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey
| | - Bahar Gok
- Graduate School of Natural and Applied Science, Yildiz Technical University, Istanbul, Turkey
| | - Cigdem Cetin Aluc
- Graduate School of Natural and Applied Science, Yildiz Technical University, Istanbul, Turkey
- Abdi Ibrahim Production Facilities, Abdi Ibrahim Pharmaceuticals, Istanbul, Turkey
| | | |
Collapse
|
3
|
Mahomoodally MF, Khadaroo SK, Hosenally M, Zengin G, Rebezov M, Ali Shariati M, Khalid A, Abdalla AN, Algarni AS, Simal-Gandara J. Nutritional, medicinal and functional properties of different parts of the date palm and its fruit ( Phoenix dactylifera L.) - A systematic review. Crit Rev Food Sci Nutr 2023; 64:7748-7803. [PMID: 37070182 DOI: 10.1080/10408398.2023.2191285] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Appraised for being one of the oldest staple nutritive foods mainly in the Arabian Peninsula, the date palm tree (Phoenix dactylifera L.), is a crop native to the subtropical and tropical regions of Southern Asia and Africa. Different parts of the date tree have been extensively studied for their nutritional and therapeutic properties. Despite an array of publications on the date tree, there has been no attempt to compile in a single study the traditional uses, nutritive value, phytochemical profile, the medicinal properties as well as the potential of the different plant parts as a functional food. Therefore, this review endeavors to systematically review the scientific literature to highlight the traditional uses of date fruit and parts around the world, the nutritional profile of several parts and the medicinal properties. A total of 215 studies was retrieved (traditional uses (n = 26), nutritional (n = 52), and medicinal (n = 84)). Scientific articles were further categorized as in vitro (n = 33), in vivo (n = 35), and clinical (n = 16) evidences. Date seeds were found to be effective against E. coli and Staphylococcus aureus. Aqueous date pollen was used to manage hormonal problems and boost fertility. Palm leaves showed anti-hyperglycemic effects via inhibition of α-amylase and α-glucosidase. Unlike previous studies, this study highlighted the functional roles of all the plant parts of the palm tree and provided insights into the various mechanism of action of their bioactive compounds. Although scientific shreds of evidence have been growing over the years, there is still a dearth of studies concerning the clinical validation of the date fruit and other plant parts to provide strong evidence on their medicinal uses. In conclusion, P. dactylifera can be regarded as a potent medicinal plant with prophylactic potential and should be further explored to alleviate the burden of both communicable and non-communicable diseases.
Collapse
Affiliation(s)
- Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Shahana Khatoon Khadaroo
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit, Mauritius
| | - Muzzammil Hosenally
- Department of Economics and Statistics, Faculty of Social Sciences & Humanities, University of Mauritius, Réduit, Mauritius
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Maksim Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, Moscow, Russian Federation
| | - Mohammad Ali Shariati
- Department of Scientific Research, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russian Federation
- Department of Scientific Research, K. G. Razumovsky Moscow State University of technologies and management (The First Cossack University), Moscow, Russian Federation
- Kazakh Research Institute of Processing and Food Industry, Semey Branch of the Institute, Almaty, Republic of Kazakhstan
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, Khartoum, Sudan
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Alanood S Algarni
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| |
Collapse
|
4
|
Bentrad N, Gaceb-Terrak R. Evaluation of the level of biomolecules isolated from date palm seeds ( Phoenix dactylifera) and in vitro Antioxidant property. Biomedicine (Taipei) 2020; 10:23-29. [PMID: 33854917 PMCID: PMC7608851 DOI: 10.37796/2211-8039.1017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 11/18/2019] [Indexed: 11/25/2022] Open
Abstract
Date palm fruits and by-products such as seeds are a source of various elements with significant nutritional values like fibres, minerals, essential fatty acids, amino acids and phenolic compounds. The experimental part was carried out on date palm seeds from Bent Kbala cultivar, the chemical composition of the organic fraction was determined using the method of UV-visible spectrophotometer, thin layer chromatography (TLC) and high-performance liquid chromatography-diode array detection (HPLC-DAD). The results revealed the presence of catechic tannins and approximately 17 phenolic compounds, including two compounds, which were identified for the first time in the date palm sub-product, especially in seeds such as naringenin and rutine. The assessment of the antioxidant potential shows that date palm seeds have a significant potential compared to standard antioxidants commonly used in cosmetics and neutraceutics industries.
Collapse
Affiliation(s)
- Najla Bentrad
- Laboratory Research on Arid Zones, Faculty of Biological Sciences, Department of Biology and Physiology of Organisms, University of Sciences and Technology Houari Boumediene (USTHB), BP 32, 16111 El-Alia, Bab Ezzouar, Algiers Algeria
| | - Rabéa Gaceb-Terrak
- Laboratory Research on Arid Zones, Faculty of Biological Sciences, Department of Biology and Physiology of Organisms, University of Sciences and Technology Houari Boumediene (USTHB), BP 32, 16111 El-Alia, Bab Ezzouar, Algiers Algeria
| |
Collapse
|
5
|
One-Pot Facile Green Synthesis of Silver Nanoparticles Using Seed Extract of Phoenix dactylifera and Their Bactericidal Potential against MRSA. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:1860280. [PMID: 30046333 PMCID: PMC6038652 DOI: 10.1155/2018/1860280] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 11/17/2022]
Abstract
Due to the great economic, health, and medicinal importance, Phoenix dactylifera seeds were chosen for the synthesis of silver nanoparticles (AgNPs) because of their ecofriendly, nonhazardous, cost effectiveness advancement over physical and chemical methods, as green methods are safe, one step, and simple and did not require any chemical reducing and stabilizing agents. The green synthesized AgNPs were characterized by UV-Vis spectroscopy, SEM, HR-TEM, and DLS. Further, the bactericidal activity of synthesized AgNPs against Methicillin-resistant Staphylococcus aureus (MRSA) was investigated by determining MIC/MBC, agar diffusion methods, and electron microscopy. TEM images of the so-formed AgNPs revealed that the NPs were spherical in shape, with a size range of 14–30 nm. The MIC and MBC of AgNPs for MRSA were found to be 10.67±0.94 and 17.33±1.89 μg/ml, respectively. The antibacterial activities were found to be increased with the increasing concentration of AgNPs. The zone of inhibition was greater (24mm) at highest concentrations (500μg/ml) of AgNPs, while smaller (11mm) at lowest concentrations (7.8μg/ml). The SEM images of treated MRSA cells showed wrinkled and damaged cell wall, indicating the disruption and disorganization of membrane. HR-TEM analysis exhibits extensive injury and complete disintegration of cell wall and membrane. Large translucent zones have been seen in the cytoplasm, due to either localized or complete separation of the cell membrane from the cell wall. Overall, these results indicate that green synthesized AgNPs should be considered as an effective treatment and prevention option for the medical devises related infections caused by deadly MRSA and other drug resistant pathogens.
Collapse
|