1
|
Wang Z, Liu Q, Zhou J, Su X. Single-detector multiplex imaging flow cytometry for cancer cell classification with deep learning. Cytometry A 2024; 105:666-676. [PMID: 39101554 DOI: 10.1002/cyto.a.24890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/27/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Imaging flow cytometry, which combines the advantages of flow cytometry and microscopy, has emerged as a powerful tool for cell analysis in various biomedical fields such as cancer detection. In this study, we develop multiplex imaging flow cytometry (mIFC) by employing a spatial wavelength division multiplexing technique. Our mIFC can simultaneously obtain brightfield and multi-color fluorescence images of individual cells in flow, which are excited by a metal halide lamp and measured by a single detector. Statistical analysis results of multiplex imaging experiments with resolution test lens, magnification test lens, and fluorescent microspheres validate the operation of the mIFC with good imaging channel consistency and micron-scale differentiation capabilities. A deep learning method is designed for multiplex image processing that consists of three deep learning networks (U-net, very deep super resolution, and visual geometry group 19). It is demonstrated that the cluster of differentiation 24 (CD24) imaging channel is more sensitive than the brightfield, nucleus, or cancer antigen 125 (CA125) imaging channel in classifying the three types of ovarian cell lines (IOSE80 normal cell, A2780, and OVCAR3 cancer cells). An average accuracy rate of 97.1% is achieved for the classification of these three types of cells by deep learning analysis when all four imaging channels are considered. Our single-detector mIFC is promising for the development of future imaging flow cytometers and for the automatic single-cell analysis with deep learning in various biomedical fields.
Collapse
Affiliation(s)
- Zhiwen Wang
- School of Integrated Circuits, Shandong University, Jinan, China
- Institute of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, China
| | - Qiao Liu
- Department of Molecular Medicine and Genetics, School of Basic Medicine Sciences, Shandong University, Jinan, China
| | - Jie Zhou
- School of Integrated Circuits, Shandong University, Jinan, China
| | - Xuantao Su
- School of Integrated Circuits, Shandong University, Jinan, China
| |
Collapse
|
2
|
Wang F, Liang L, Yu M, Wang W, Badar IH, Bao Y, Zhu K, Li Y, Shafi S, Li D, Diao Y, Efferth T, Xue Z, Hua X. Advances in antitumor activity and mechanism of natural steroidal saponins: A review of advances, challenges, and future prospects. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155432. [PMID: 38518645 DOI: 10.1016/j.phymed.2024.155432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/11/2024] [Accepted: 02/06/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Cancer, the second leading cause of death worldwide following cardiovascular diseases, presents a formidable challenge in clinical settings due to the extensive toxic side effects associated with primary chemotherapy drugs employed for cancer treatment. Furthermore, the emergence of drug resistance against specific chemotherapeutic agents has further complicated the situation. Consequently, there exists an urgent imperative to investigate novel anticancer drugs. Steroidal saponins, a class of natural compounds, have demonstrated notable antitumor efficacy. Nonetheless, their translation into clinical applications has remained unrealized thus far. In light of this, we conducted a comprehensive systematic review elucidating the antitumor activity, underlying mechanisms, and inherent limitations of steroidal saponins. Additionally, we propose a series of strategic approaches and recommendations to augment the antitumor potential of steroidal saponin compounds, thereby offering prospective insights for their eventual clinical implementation. PURPOSE This review summarizes steroidal saponins' antitumor activity, mechanisms, and limitations. METHODS The data included in this review are sourced from authoritative databases such as PubMed, Web of Science, ScienceDirect, and others. RESULTS A comprehensive summary of over 40 steroidal saponin compounds with proven antitumor activity, including their applicable tumor types and structural characteristics, has been compiled. These steroidal saponins can be primarily classified into five categories: spirostanol, isospirostanol, furostanol, steroidal alkaloids, and cholestanol. The isospirostanol and cholestanol saponins are found to have more potent antitumor activity. The primary antitumor mechanisms of these saponins include tumor cell apoptosis, autophagy induction, inhibition of tumor migration, overcoming drug resistance, and cell cycle arrest. However, steroidal saponins have limitations, such as higher cytotoxicity and lower bioavailability. Furthermore, strategies to address these drawbacks have been proposed. CONCLUSION In summary, isospirostanol and cholestanol steroidal saponins demonstrate notable antitumor activity and different structural categories of steroidal saponins exhibit variations in their antitumor signaling pathways. However, the clinical application of steroidal saponins in cancer treatment still faces limitations, and further research and development are necessary to advance their potential in tumor therapy.
Collapse
Affiliation(s)
- Fengge Wang
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Lu Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR, PR China
| | - Ma Yu
- School of Life Science and Engineering, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang, 621010, Sichuan, PR China
| | - Wenjie Wang
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Iftikhar Hussain Badar
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China; Department of Meat Science and Technology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Yongping Bao
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, United Kingdom
| | - Kai Zhu
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Yanlin Li
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Saba Shafi
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Dangdang Li
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Yongchao Diao
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz 55128, Germany.
| | - Zheyong Xue
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China.
| | - Xin Hua
- College of Life Science, Northeast Forestry University, Harbin, Heilongjiang, 150040, PR China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Harbin, Heilongjiang, 150040, PR China.
| |
Collapse
|
3
|
Hong P, Wu M, Wei X, Xu X, Wu P, Gan L, Wu R, Jin J, Zhang K, Li D, Chen M, Wong W, Liu W, Zheng X. Inhibitory effect of liriopesides B in combination with gemcitabine on human pancreatic cancer cells. Bioorg Chem 2024; 142:106937. [PMID: 37913583 DOI: 10.1016/j.bioorg.2023.106937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Gemcitabine (GEM) is a standard chemotherapeutic agent for patients with pancreatic cancer; however, GEM-based chemotherapy has a high rate of toxicity. A combination of GEM and active constituents from natural products may enhance its therapeutic efficacy and reduce its toxicity. This study investigated the synergistic effects of the combination of liriopesides B (LirB) from Liriope spicata var. prolifera and GEM on human pancreatic cancer cells. The results of our study showed that the combination of LirB and GEM synergistically decreased the viability of pancreatic cancer cells. The combination also caused a strong increase in apoptosis and a strong decrease in cell migration and invasion. Furthermore, LirB combined with GEM had potent inhibitory effects on pancreatic cancer stem cells (CSCs). Studies on the mechanisms of action showed that the combination more potently inhibited protein kinase B (Akt) and nuclear factor kappa B (NF-κB), as well as the downstream antiapoptotic molecules B-cell lymphoma 2 (Bcl-2) and survivin than either agent used alone. The results of this study suggest that the combination of LirB with GEM may improve the efficacy of GEM for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Peng Hong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Mengshuo Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xingchuan Wei
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xuetao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
| | - Panpan Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
| | - Lishe Gan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
| | - Rihui Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
| | - Jingwei Jin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
| | - Min Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China
| | - Wingleung Wong
- Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Wenfeng Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.
| | - Xi Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, China; Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China.
| |
Collapse
|
4
|
Liu Q, Lu JJ, Hong HJ, Yang Q, Wang Y, Chen XJ. Ophiopogon japonicus and its active compounds: A review of potential anticancer effects and underlying mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 113:154718. [PMID: 36854203 DOI: 10.1016/j.phymed.2023.154718] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 02/04/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Ophiopogon japonicus (Thunb.) Ker Gawl., a well-known Chinese herb, has been used in traditional Chinese medicine for thousands of years. Extensive in vitro and in vivo studies have shown that O. japonicus and its active compounds exhibit potential anticancer effects in a variety of cancer cells in vitro and suppress tumor growth and metastasis without causing serious toxicity in vivo. PURPOSE This review aims to systemically summarize and discuss the anticancer effects and the underlying mechanisms of O. japonicus extracts and its active compounds. METHODS The review is prepared following the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Various scientific databases including Web of Science, PubMed, Scopus, and Chinese National Knowledge Infrastructure were searched using the keywords: Ophiopogon japonicus, tumor, cancer, carcinoma, content, pharmacokinetics, and toxicity. RESULTS O. japonicus extracts and the active compounds, such as ruscogenin-1-O-[β-d-glucopyranosyl(1→2)][β-d-xylopyranosyl(1→3)]-β-d-fucopyranoside (DT-13), ophiopogonin B, and ophiopogonin D, exert potential anticancer effects, including the induction of cell cycle arrest, activation of apoptosis and autophagy, and inhibition of metastasis and angiogenesis. In addition, the mechanisms underlying these effects, as well as the pharmacokinetics, toxicity and clinical utility of O. japonicus extracts and active compounds are discussed. Furthermore, this review highlights the research and application prospects of these compounds in immunotherapy and combination chemotherapy. CONCLUSIONS The traditional herb O. japonicus and its phytochemicals could be safe and reliable anticancer drug candidates, alone or in combination with chemotherapeutic drugs. We hope that this review, which highlights the anticancer properties of O. japonicus, will contribute to drug optimization, therapeutic development, and future studies on cancer therapies based on this medicinal plant.
Collapse
Affiliation(s)
- Qiao Liu
- Institute of Chinese Medical Sciences, and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR 999078, China
| | - Jin-Jian Lu
- Institute of Chinese Medical Sciences, and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR 999078, China
| | - Hui-Jie Hong
- Institute of Chinese Medical Sciences, and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR 999078, China
| | - Qi Yang
- Institute of Chinese Medical Sciences, and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR 999078, China
| | - Yitao Wang
- Institute of Chinese Medical Sciences, and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR 999078, China
| | - Xiao-Jia Chen
- Institute of Chinese Medical Sciences, and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR 999078, China; Zhuhai UM Science & Technology Research Institute, Zhuhai 519031, China.
| |
Collapse
|
5
|
Comparison of Ophiopogon japonicus and Liriope spicata var. prolifera from Different Origins Based on Multi-Component Quantification and Anticancer Activity. Molecules 2023; 28:molecules28031045. [PMID: 36770712 PMCID: PMC9920971 DOI: 10.3390/molecules28031045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
The tuberous root of Ophiopogon japonicus (Thunb.) Ker-Gawl. is a well-known Chinese medicine also called Maidong (MD) in Chinese. It could be divided into "Chuanmaidong" (CMD) and "Zhemaidong" (ZMD), according to the geographic origins. Meanwhile, the root of Liriope spicata (Thunb.) Lour. var. prolifera Y. T. Ma (SMD) is occasionally used as a substitute for MD in the market. In this study, a reliable pressurized liquid extraction and HPLC-DAD-ELSD method was developed for the simultaneous determination of nine chemical components, including four steroidal saponins (ophiopojaponin C, ophiopogonin D, liriopesides B and ophiopogonin D'), four homoisoflavonoids (methylophiopogonone A, methylophiopogonone B, methylophiopogonanone A and methylophiopogonanone B) and one sapogenin (ruscogenin) in CMD, ZMD and SMD. The method was validated in terms of linearity, sensitivity, precision, repeatability and accuracy, and then applied to the real samples from different origins. The results indicated that there were significant differences in the contents of the investigated compounds in CMD, ZMD and SMD. Ruscogenin was not detected in all the samples, and liriopesides B was only found in SMD samples. CMD contained higher ophiopogonin D and ophiopogonin D', while the other compounds were more abundant in ZMD. Moreover, the anticancer effects of the herbal extracts and selected components against A2780 human ovarian cancer cells were also compared. CMD and ZMD showed similar cytotoxic effects, which were stronger than those of SMD. The effects of MD may be due to the significant anticancer potential of ophiopognin D' and homoisoflavonoids. These results suggested that there were great differences in the chemical composition and pharmacological activity among CMD, ZMD and SMD; thus, their origins should be carefully considered in clinical application.
Collapse
|
6
|
Yu H, Wang H, Yin Y, Wang Z. Liriopesides B from Liriope spicata var. prolifera inhibits metastasis and induces apoptosis in A2780 human ovarian cancer cells. Mol Med Rep 2020; 22:1747-1758. [PMID: 32582970 PMCID: PMC7411299 DOI: 10.3892/mmr.2020.11256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 05/12/2020] [Indexed: 12/02/2022] Open
Abstract
Ovarian cancer is the most frequent cause of death among gynecological cancers. In the present study, the anti-cancer effect of liriopesides B, a steroidal saponin from Liriope spicata var. prolifera, against A2780 cells was investigated. Transwell chambers were adopted to assess its effect on cell invasion and chemotaxis abilities. Flow cytometry was used to analyze the cell cycle and apoptosis. Reverse transcription-quantitative PCR was employed to examine gene expression levels. Western blot analysis was performed to detect protein expression levels. Liriopesides B inhibited the invasion and chemotactic movement ability of A2780 cells in a dose-dependent manner. Furthermore, liriopesides B caused cell cycle arrest in A2780 cells at the G1 phase following incubation for 24, 48 and 72 h. Hoechst 33258 staining indicated that, following incubation for 48 h, liriopesides B induced cell apoptosis in a dose-dependent manner. Flow cytometry verified that liriopesides B induced apoptosis in A2780 cells and induced late apoptosis in a dose-dependent manner. Furthermore, liriopesides B significantly increased the mRNA expression levels of E-CADHERIN, p21 and p27 and decreased the gene expression levels of BCL-2, which was consistent with its protein expression levels. In conclusion, liriopesides B possess anti-cancer properties, including inhibition of metastasis-associated behaviors, cell cycle arrest and induction of apoptosis. Therefore, liriopesides B may be considered as a candidate drug against ovarian cancer.
Collapse
Affiliation(s)
- Haizhong Yu
- College of Life Sciences, Chongqing University, Chongqing 400044, P.R. China
| | - Haiyan Wang
- School of Food Science and Technology, Hubei University of Arts and Science, Xiangyang, Hubei 441053, P.R. China
| | - Youping Yin
- College of Life Sciences, Chongqing University, Chongqing 400044, P.R. China
| | - Zhongkang Wang
- College of Life Sciences, Chongqing University, Chongqing 400044, P.R. China
| |
Collapse
|
7
|
Sheng H, Lv W, Zhu L, Wang L, Wang Z, Han J, Hu J. Liriopesides B induces apoptosis and cell cycle arrest in human non‑small cell lung cancer cells. Int J Mol Med 2020; 46:1039-1050. [PMID: 32705266 PMCID: PMC7387084 DOI: 10.3892/ijmm.2020.4645] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022] Open
Abstract
Although significant progress has been made in the treatment of lung cancer, it remains the leading cause of cancer-associated mortality. Liriopesides B (LPB) is a natural product isolated from the tuber of Liriope platyphylla, whose effective substances have exhibited antitumor activity in several types of cancer. However, the functions of LPB in non-small cell lung cancer (NSCLC) require further investigation. Therefore, the present study aimed to investigate whether LPB influences the pathogenic effects of NSCLC. In the present study, it was demonstrated that LPB reduced proliferation, and induced apoptosis and cell cycle arrest in non-small cell lung cancer cells. CCK-8 and colony formation assays demonstrated that LPB decreased cell viability and proliferation of H460 and H1975 cells in a dose-dependent manner. Flow cytometry revealed that LPB significantly induced apoptosis of NSCLC cells, along with changes in the expression of apoptosis-associated proteins, including an increase in Bax, caspase-3, and caspase-8 expression, and a decrease in Bcl-2 and Bcl-xl expression. LPB inhibited the progression of the cell cycle from the G1 to the S phase. Furthermore, autophagy was increased in cells treated with LPB. Finally, the expression of programmed death-ligand 1 was significantly decreased by LPB. In conclusion, the results of the present study highlight a potential novel strategy for the clinical treatment of NSCLC.
Collapse
Affiliation(s)
- Hongxu Sheng
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 350002, P.R. China
| | - Wang Lv
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 350002, P.R. China
| | - Linhai Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 350002, P.R. China
| | - Luming Wang
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 350002, P.R. China
| | - Zhitian Wang
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 350002, P.R. China
| | - Jia Han
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 350002, P.R. China
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 350002, P.R. China
| |
Collapse
|