1
|
Wang J, Zheng Q, Wang H, Shi L, Wang G, Zhao Y, Fan C, Si J. Sesquiterpenes and Sesquiterpene Derivatives from Ferula: Their Chemical Structures, Biosynthetic Pathways, and Biological Properties. Antioxidants (Basel) 2023; 13:7. [PMID: 38275627 PMCID: PMC10812793 DOI: 10.3390/antiox13010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Ferula is a genus of flowering plants known for its edible and medicinal properties. Since ancient times, many species of Ferula have been used in traditional medicine to treat various health issues across countries, such as digestive disorders, respiratory problems, and even as a remedy for headaches and toothaches. In addition, they are also used as a flavoring agent in various cuisines. As the main active ingredients in Ferula, sesquiterpenes and their derivatives, especially sesquiterpene coumarins, sesquiterpene phenylpropanoids, and sesquiterpene chromones, have attracted the attention of scientists due to the diversity of their chemical structures, as well as their extensive and promising biological properties, such as antioxidative, anti-inflammatory, antibacterial properties. However, there has not been a comprehensive review of sesquiterpenes and their derivatives from this plant. This review aims to provide an overview of the chemical structures, biosynthetic pathways, and biological properties of sesquiterpenes and sesquiterpene derivatives from Ferula, which may help guide future research directions and possible application methods for this valuable edible and medicinal plant.
Collapse
Affiliation(s)
- Junchi Wang
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (J.W.); (Q.Z.); (H.W.)
| | - Qi Zheng
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (J.W.); (Q.Z.); (H.W.)
| | - Huaxiang Wang
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (J.W.); (Q.Z.); (H.W.)
| | - Leiling Shi
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi 830002, China; (L.S.); (G.W.); (Y.Z.)
| | - Guoping Wang
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi 830002, China; (L.S.); (G.W.); (Y.Z.)
| | - Yaqin Zhao
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi 830002, China; (L.S.); (G.W.); (Y.Z.)
| | - Congzhao Fan
- Xinjiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi 830002, China; (L.S.); (G.W.); (Y.Z.)
| | - Jianyong Si
- The Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (J.W.); (Q.Z.); (H.W.)
| |
Collapse
|
2
|
Chen Y, Wei Y, Cai B, Zhou D, Qi D, Zhang M, Zhao Y, Li K, Wedge DE, Pan Z, Xie J, Wang W. Discovery of Niphimycin C from Streptomyces yongxingensis sp. nov. as a Promising Agrochemical Fungicide for Controlling Banana Fusarium Wilt by Destroying the Mitochondrial Structure and Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12784-12795. [PMID: 36170206 DOI: 10.1021/acs.jafc.2c02810] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense (Foc) is the most destructive soil-borne fungal disease. Tropical race 4 (Foc TR4), one of the strains of Foc, can infect many commercial cultivars, which represents a threat to global banana production. Currently, there are hardly any effective chemical fungicides to control the disease. To search for natural product-based fungicides for controlling banana Fusarium wilt, we identified a novel strain Streptomyces yongxingensis sp. nov. (JCM 34965) from a marine soft coral, from which a bioactive compound, niphimycin C, was isolated using an activity-guided method. Niphimycin C exhibited a strong antifungal activity against Foc TR4 with a value of 1.20 μg/mL for EC50 and obviously inhibited the mycelial growth and spore germination of Foc TR4. It caused the functional loss of mitochondria and the disorder of metabolism of Foc TR4 cells. Further study showed that niphimycin C reduced key enzyme activities of the tricarboxylic acid (TCA) cycle and the electron transport chain (ETC). It displayed broad-spectrum antifungal activities against the selected 12 phytopathogenic fungi. In pot experiments, niphimycin C reduced the disease indexes in banana plantlets and inhibited the infection of Foc TR4 in roots. Hence, niphimycin C could be a promising agrochemical fungicide for the management of fungal diseases.
Collapse
Affiliation(s)
- Yufeng Chen
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yongzan Wei
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Bingyu Cai
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Dengbo Zhou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Dengfeng Qi
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Miaoyi Zhang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yankun Zhao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Kai Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - David E Wedge
- United States Department of Agriculture-Agricultural Research Service, Natural Products Utilization Research Unit, University, Mississippi 38677, United States
| | - Zhiqiang Pan
- United States Department of Agriculture-Agricultural Research Service, Natural Products Utilization Research Unit, University, Mississippi 38677, United States
| | - Jianghui Xie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Wei Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
3
|
Abass S, Parveen R, Irfan M, Jan B, Husain SA, Ahmad S. Synergy based extracts of medicinal plants: Future antimicrobials to combat multidrug resistance. Curr Pharm Biotechnol 2022; 23:1527-1540. [PMID: 35081888 DOI: 10.2174/1389201023666220126115656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022]
Abstract
The use of herbal medicines and supplements in the last thirty years has increased enormously. Herbal medication has demonstrated promising and effective potential against various diseases. Herbal and phytoconstituent medications are gaining popularity globally and many people are adopting herbal remedies to deal with different health issues. The indiscriminate use of antibiotics, due to the development of antimicrobial resistance, poses an unprecedented problem for human civilization. Bacterial infections are difficult to cure because of the propensity of microbes to acquire resistance to a wide range of antimicrobial drugs. New compounds are being explored and quantified for possible antibacterial activity with little or no side effects. Researchers are investigating the range of therapeutic plants mentioned in Unani, Ayurveda, and Siddha around the globe. Known and commonly acclaimed global databases such as PubMed, Research Gate, Science Direct, Google Scholar, were searched using different search strings such as Indian medicinal plants, multidrug resistance (MDR), thin layer chromatography (TLC), antimicrobials, and Synergism were used in diverse combinations to reclaim numerous citations associated with this area. Thus, the current review aims to shed a light on the information of medicinal plants as a potential foundation of herbal drugs and elucidate how synergism and TLC bioautography plays a crucial role in finding antimicrobial compounds.
Collapse
Affiliation(s)
- Sageer Abass
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Rabea Parveen
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohammad Irfan
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Bisma Jan
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Syed Akhtar Husain
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
4
|
Nanotechnologies: An Innovative Tool to Release Natural Extracts with Antimicrobial Properties. Pharmaceutics 2021; 13:pharmaceutics13020230. [PMID: 33562128 PMCID: PMC7915176 DOI: 10.3390/pharmaceutics13020230] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Site-Specific release of active molecules with antimicrobial activity spurred the interest in the development of innovative polymeric nanocarriers. In the preparation of polymeric devices, nanotechnologies usually overcome the inconvenience frequently related to other synthetic strategies. High performing nanocarriers were synthesized using a wide range of starting polymer structures, with tailored features and great chemical versatility. Over the last decade, many antimicrobial substances originating from plants, herbs, and agro-food waste by-products were deeply investigated, significantly catching the interest of the scientific community. In this review, the most innovative strategies to synthesize nanodevices able to release antimicrobial natural extracts were discussed. In this regard, the properties and structure of the starting polymers, either synthetic or natural, as well as the antimicrobial activity of the biomolecules were deeply investigated, outlining the right combination able to inhibit pathogens in specific biological compartments.
Collapse
|
5
|
Zang Y, Cheng Z, Wu T. TLC Bioautography on Screening of Bioactive Natural Products: An Update Review. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411015666181224145346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Background:
TLC bioautography is a hyphenated technique combining planar chromatographic
separation and in situ biological activity detection. This coupled method has been receiving
much attention in screening bio-active natural products because of its properties of being simple, rapid,
inexpensive, and effective.
Methods:
The recent progress in the development of method of TLC bioautography for detecting antimicrobial
and enzyme inhibitory activities dating between 2012 and early 2018 has been reviewed.
The applications of this method in biological screening of natural products were also presented.
Results:
Some anaerobic and microaerophilic bacteria and a causative bacterium of tuberculosis have
been adopted to TLC direct bioautography. Seven types of enzymes including acetylcholinesterase,
glucosidase, lipase, xanthine oxidase, tyrosinase, monoamine oxidase, and dipeptidyl peptidase IV
have so far been adopted on TLC bioautography. Its new application in screening antiurolithiatic
agents was included.
Conclusion:
The standard experimental procedures are required for TLC antioxidant and antimicrobial
assays. Some new enzymes should be attempted and adopted on TLC bioautography. The existing
TLC methods for enzyme inhibition need more application studies to assess their screening capacity
in the discovery of active compounds. The GC-MS or LC-MS approaches have gradually been
coupled to TLC bioautography for fast structural characterization of active compounds.
Collapse
Affiliation(s)
- Yichao Zang
- Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhihong Cheng
- Department of Pharmacognosy, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Tao Wu
- Key Laboratory of Standardization of Chinese Medicines of Ministry of Education, The Shanghai Key Laboratory for Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
6
|
Sabzehzari M, Naghavi MR, Bozari M, Orafai HM, Johnston TP, Sahebkar A. Pharmacological and Therapeutic Aspects of Plants from the Genus Ferula: A Comprehensive Review. Mini Rev Med Chem 2020; 20:1233-1257. [PMID: 32368975 DOI: 10.2174/1389557520666200505125618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/31/2019] [Accepted: 12/02/2019] [Indexed: 11/22/2022]
Abstract
Inspired by nature, humankind has been able to attain significant achievements in the drug and food industries. Particularly, medicinal plants are a rich source of medicinal, cosmetic, sanitary, and aromatic substances. Genus Ferula from the Apiaceae family is a plant genus that possesses over 170 species, which have been carefully documented with regard to their medicinal properties. Ferula spp. affects many body organs, and their respective functions, in humans, such as the immune system, gastrointestinal tract, genitourinary, endocrine, respiratory, cardiovascular, nervous system, bone (skeleton), and teeth. In spite of the benefits, ferulosis (Ferula toxicity) is an important aspect of Ferula consumption in humans and animals. Hemorrhagic problems and infertility are important signs of ferulosis. In this review, we have described all of the effects of the active ingredients of Ferula spp. and their mechanisms of actions, when known, based on an extensive literature review. Thus, our review opens a window of the benefits of Ferula as a phyto-pharmaceutical and its therapeutic applications in pharmacy, dentistry, and medicine.
Collapse
Affiliation(s)
- Mohammad Sabzehzari
- Division of Biotechnology, Agronomy and Plant Breeding Department, University of Tehran, Tehran, Iran
| | - Mohammad Reza Naghavi
- Division of Biotechnology, Agronomy and Plant Breeding Department, University of Tehran, Tehran, Iran
| | - Motahare Bozari
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein M Orafai
- Department of Pharmaceutics, Faculty of Pharmacy, University of Ahl Al Bayt, Karbala, Iraq
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, MO 64106, United States
| | | |
Collapse
|