1
|
Shi Q, Yu S, Zhou M, Wang P, Li W, Jin X, Pan Y, Sheng Y, Li H, Qin L, Meng X. Diterpenoids of Marine Organisms: Isolation, Structures, and Bioactivities. Mar Drugs 2025; 23:131. [PMID: 40137317 PMCID: PMC11943766 DOI: 10.3390/md23030131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
Diterpenoids from marine-derived organisms represent a prolific source of secondary metabolites, characterized by their exceptionally promising chemical structures and pronounced pharmacological properties. In recent years, marine diterpenoids have garnered considerable attention and are regarded as a prominent area of scientific research. As a vital class of metabolites, diterpenoids show diverse biological activities, encompassing antibacterial, antifungal, antiviral, anti-inflammatory, inhibitory, and cytotoxic activities, among others. With the rapid advancement of equipment and identified technology, there has been a tremendous surge in the discovery rate of novel diterpenoid skeletons and bioactivities derived from marine fungi over the past decade. The present review compiles the reported diterpenoids from marine fungal sources mainly generated from January 2000 to December 2024. In this paper, 515 diterpenoids from marine organisms are summarized. Among them, a total of 281 structures from various fungal species are included, comprising 55 from sediment, 39 from marine animals (predominantly invertebrates, including 17 from coral and 22 from sponges), and 53 from marine plants (including 34 from algae and 19 from mangrove). Diverse biological activities are exhibited in 244 compounds, and among these, 112 compounds showed great anti-tumor activity (45.90%) and 110 metabolites showed remarkable cytotoxicity (45.08%). Furthermore, these compounds displayed a range of diverse bioactivities, including potent anti-oxidant activity (2.87%), promising anti-inflammatory activity (1.64%), great anti-bacterial activity (1.64%), notable anti-thrombotic activity (1.23%), etc. Moreover, the diterpenoids' structural characterization and biological activities are additionally elaborated upon. The present critical summary provides a comprehensive overview of the reported knowledge regarding diterpenoids derived from marine fungi, invertebrates, and aquatic plants. The systematic review presented herein offers medical researchers an extensive range of promising lead compounds for the development of marine drugs, thereby furnishing novel and valuable pharmaceutical agents.
Collapse
Affiliation(s)
- Qi Shi
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China; (Q.S.); (S.Y.); (M.Z.); (P.W.); (W.L.); (X.J.); (Y.P.); (Y.S.)
| | - Shujie Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China; (Q.S.); (S.Y.); (M.Z.); (P.W.); (W.L.); (X.J.); (Y.P.); (Y.S.)
| | - Manjia Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China; (Q.S.); (S.Y.); (M.Z.); (P.W.); (W.L.); (X.J.); (Y.P.); (Y.S.)
| | - Peilu Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China; (Q.S.); (S.Y.); (M.Z.); (P.W.); (W.L.); (X.J.); (Y.P.); (Y.S.)
| | - Wenlong Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China; (Q.S.); (S.Y.); (M.Z.); (P.W.); (W.L.); (X.J.); (Y.P.); (Y.S.)
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xin Jin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China; (Q.S.); (S.Y.); (M.Z.); (P.W.); (W.L.); (X.J.); (Y.P.); (Y.S.)
| | - Yiting Pan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China; (Q.S.); (S.Y.); (M.Z.); (P.W.); (W.L.); (X.J.); (Y.P.); (Y.S.)
| | - Yunjie Sheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China; (Q.S.); (S.Y.); (M.Z.); (P.W.); (W.L.); (X.J.); (Y.P.); (Y.S.)
| | - Huaqiang Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China; (Q.S.); (S.Y.); (M.Z.); (P.W.); (W.L.); (X.J.); (Y.P.); (Y.S.)
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China; (Q.S.); (S.Y.); (M.Z.); (P.W.); (W.L.); (X.J.); (Y.P.); (Y.S.)
| | - Xiongyu Meng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China; (Q.S.); (S.Y.); (M.Z.); (P.W.); (W.L.); (X.J.); (Y.P.); (Y.S.)
| |
Collapse
|
2
|
El-Seedi HR, Refaey MS, Elias N, El-Mallah MF, Albaqami FMK, Dergaa I, Du M, Salem MF, Tahir HE, Dagliaa M, Yosri N, Zhang H, El-Seedi AH, Guo Z, Khalifa SAM. Marine natural products as a source of novel anticancer drugs: an updated review (2019-2023). NATURAL PRODUCTS AND BIOPROSPECTING 2025; 15:13. [PMID: 39853457 PMCID: PMC11759743 DOI: 10.1007/s13659-024-00493-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 12/16/2024] [Indexed: 01/26/2025]
Abstract
Marine natural products have long been recognized as a vast and diverse source of bioactive compounds with potential therapeutic applications, particularly in oncology. This review provides an updated overview of the significant advances made in the discovery and development of marine-derived anticancer drugs between 2019 and 2023. With a focus on recent research findings, the review explores the rich biodiversity of marine organisms, including sponges, corals, algae, and microorganisms, which have yielded numerous compounds exhibiting promising anticancer properties. Emphasizing the multifaceted mechanisms of action, the review discusses the molecular targets and pathways targeted by these compounds, such as cell cycle regulation, apoptosis induction, angiogenesis inhibition, and modulation of signaling pathways. Additionally, the review highlights the innovative strategies employed in the isolation, structural elucidation, and chemical modification of marine natural products to enhance their potency, selectivity, and pharmacological properties. Furthermore, it addresses the challenges and opportunities associated with the development of marine-derived anticancer drugs, including issues related to supply, sustainability, synthesis, and clinical translation. Finally, the review underscores the immense potential of marine natural products as a valuable reservoir of novel anticancer agents and advocates for continued exploration and exploitation of the marine environment to address the unmet medical needs in cancer therapy.
Collapse
Affiliation(s)
- Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, 42351, Madinah, Saudi Arabia.
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Jiangsu University, Nanjing, 210024, China.
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom, 31100107, Egypt.
| | - Mohamed S Refaey
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Nizar Elias
- Department of Laboratory Medicine, Faculty of Medicine, University of Kalamoon, P.O. Box 222, Dayr Atiyah, Syria
| | - Mohamed F El-Mallah
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom, 31100107, Egypt
| | - Faisal M K Albaqami
- Biology Department, Faculty of Science, Islamic University of Madinah, 42351, Madinah, Saudi Arabia.
| | | | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, China
| | - Mohamed F Salem
- Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute, GEBRI, University of Sadat City, P.O.Box:79, Sadat City, Egypt
| | - Haroon Elrasheid Tahir
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Maria Dagliaa
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131, Naples, NA, Italy
| | - Nermeen Yosri
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
- Chemistry Department of Medicinal and Aromatic Plants, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Hongcheng Zhang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Awg H El-Seedi
- International IT College of Sweden Stockholm, Arena Academy, Hälsobrunnsgatan 6, 11361, Stockholm, Sweden
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Shaden A M Khalifa
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
- Psychiatry and Neurology Department, Capio Saint Göran's Hospital, Sankt Göransplan 1, 112 19, Stockholm, Sweden.
| |
Collapse
|
3
|
Sun H, Sun K, Sun J. Recent Advances of Marine Natural Indole Products in Chemical and Biological Aspects. Molecules 2023; 28:molecules28052204. [PMID: 36903451 PMCID: PMC10005763 DOI: 10.3390/molecules28052204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
The ocean has always been one of the important sources of natural products. In recent years, many natural products with different structures and biological activities have been obtained, and their value has been clearly recognized. Researchers have been deeply engaged in the field of separation and extraction, derivative synthesis, structural studies, biological evaluation, and other fields of research for marine natural products. Thus, a series of marine indole natural products which have structural and biological prospect have caught our eyes. In this review, we summarize some of these marine indole natural products with relatively good pharmacological activity and research value, and discuss issues concerning chemistry, pharmacological activity, biological evaluation, and synthesis, including monomeric indoles, indole peptides, bis-indoles, and annelated indoles. Most of the compounds have cytotoxic, antiviral, antifungal, or anti-inflammatory activities.
Collapse
Affiliation(s)
- Haoyi Sun
- School of Parmacy and Pharmaceutical Sciences, Institute of Materia Medical, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Kangping Sun
- School of Parmacy and Pharmaceutical Sciences, Institute of Materia Medical, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Jingyong Sun
- School of Parmacy and Pharmaceutical Sciences, Institute of Materia Medical, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
- NHC Key Laboratory of Biotechnology Drugs, Shandong Academy of Medical Sciences, Jinan 250117, China
- Key Laboratory for Rare & Uncommon Discases of Shandong Province, Jinan 250117, China
- Correspondence: ; Tel.: +86-531-59567209
| |
Collapse
|
4
|
Niu J, Qi J, Wang P, Liu C, Gao JM. The chemical structures and biological activities of indole diterpenoids. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:3. [PMID: 36595079 PMCID: PMC9810782 DOI: 10.1007/s13659-022-00368-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Indole diterpenoids (IDTs) are an essential class of structurally diverse fungal secondary metabolites, that generally appear to be restricted to a limited number of fungi, such as Penicillium, Aspergillus, Claviceps, and Epichloe species, etc. These compounds share a typical core structure consisting of a cyclic diterpene skeleton of geranylgeranyl diphosphate (GGPP) and an indole ring moiety derived from indole-3-glycerol phosphate (IGP). 3-geranylgeranylindole (3-GGI) is the common precursor of all IDTs. On this basis, it is modified by cyclization, oxidation, and prenylation to generate a large class of compounds with complex structures. These compounds exhibit antibacterial, anti-insect, and ion channel inhibitory activities. We summarized 204 compounds of IDTs discovered from various fungi over the past 50 years, these compounds were reclassified, and their biological activities were summarized. This review will help to understand the structural diversity of IDTs and provide help for their physiological activities.
Collapse
Affiliation(s)
- Jingwen Niu
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Jianzhao Qi
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Pengchao Wang
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Chengwei Liu
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, 150040, Heilongjiang, China.
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
5
|
Qiu P, Xia J, Zhang H, Lin D, Shao Z. A Review of Diterpenes from Marine-Derived Fungi: 2009-2021. Molecules 2022; 27:molecules27238303. [PMID: 36500394 PMCID: PMC9741372 DOI: 10.3390/molecules27238303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
Marine-derived fungi are important sources of novel compounds and pharmacologically active metabolites. As an important class of natural products, diterpenes show various biological activities, such as antiviral, antibacterial, anti-inflammatory, antimalarial, and cytotoxic activities. Developments of equipment for the deep-sea sample collection allow discoveries of more marine-derived fungi with increasing diversity, and much progress has been made in the identification of diterpenes with novel structures and bioactivities from marine fungi in the past decade. The present review article summarized the chemical structures, producing organisms and biological activities of 237 diterpenes which were isolated from various marine-derived fungi over the period from 2009 to 2021. This review is beneficial for the exploration of marine-derived fungi as promising sources of bioactive diterpenes.
Collapse
Affiliation(s)
- Peng Qiu
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, China
| | - Jinmei Xia
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Haitao Zhang
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, China
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, China
- Correspondence: (H.Z.); (D.L.); (Z.S.)
| | - Donghai Lin
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Correspondence: (H.Z.); (D.L.); (Z.S.)
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- Correspondence: (H.Z.); (D.L.); (Z.S.)
| |
Collapse
|
6
|
Hou Y, Chen M, Sun Z, Ma G, Chen D, Wu H, Yang J, Li Y, Xu X. The Biosynthesis Related Enzyme, Structure Diversity and Bioactivity Abundance of Indole-Diterpenes: A Review. Molecules 2022; 27:6870. [PMID: 36296463 PMCID: PMC9611320 DOI: 10.3390/molecules27206870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/20/2022] [Accepted: 10/10/2022] [Indexed: 11/18/2022] Open
Abstract
Indole diterpenes are a large class of secondary metabolites produced by fungi, possessing a cyclic diterpenoid backbone and an indole moiety. Novel structures and important biological activity have made indole diterpenes one of the focuses of synthetic chemists. Although the discovery, identification, structural diversity, biological activity and especially structure-activity relationship of indole diterpenes have been reported in some papers in recent years, they are absent of a systematic and comprehensive analysis, and there is no elucidation of enzymes related to this kind of natural product. Therefore, it is necessary to summarize the relevant reports to provide new perspectives for the following research. In this review, for the first time, the function of related synthases and the structure-activity relationship of indole diterpenes are expounded, and the recent research advances of them are emphasized.
Collapse
Affiliation(s)
- Yong Hou
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Jinghong 666100, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Meiying Chen
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Jinghong 666100, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Zhaocui Sun
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Jinghong 666100, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Guoxu Ma
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Jinghong 666100, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Deli Chen
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Haifeng Wu
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Junshan Yang
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Yihang Li
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Jinghong 666100, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| | - Xudong Xu
- Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan Branch, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Jinghong 666100, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China
| |
Collapse
|
7
|
Wang HN, Sun SS, Liu MZ, Yan MC, Liu YF, Zhu Z, Zhang Z. Natural bioactive compounds from marine fungi (2017-2020). JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:203-230. [PMID: 34253101 DOI: 10.1080/10286020.2021.1947254] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Secondary metabolites generated by marine fungi have relatively small molecular weights and excellent activities and have become an important source for developing drug lead compounds. The review summarizes the structures of novel small-molecule compounds derived from marine fungi in recent years; introduces representative monomers in antimicrobial, antitumor, anti-viral, and anti-neuritis aspects; and discusses their biological activities and molecular mechanisms. This review will act as a guide for further discovering marine-derived drugs with novel chemical structures and specific targeting mechanisms.
Collapse
Affiliation(s)
- Huan-Nan Wang
- School of Pharmacy, Jining Medical University, Rizhao 276800, China
| | - Shan-Shan Sun
- School of Pharmacy, Jining Medical University, Rizhao 276800, China
| | - Meng-Zhen Liu
- School of Pharmacy, Jining Medical University, Rizhao 276800, China
| | - Mao-Cai Yan
- School of Pharmacy, Jining Medical University, Rizhao 276800, China
| | - Yu-Feng Liu
- School of Pharmacy, Jining Medical University, Rizhao 276800, China
| | - Zheng Zhu
- College of Material Science and Engineering, Hebei University of Engineering, Handan 056038, China
| | - Zhen Zhang
- School of Pharmacy, Jining Medical University, Rizhao 276800, China
| |
Collapse
|
8
|
Li J, Zhuang CL. Natural Indole Alkaloids from Marine Fungi: Chemical Diversity and Biological Activities. PHARMACEUTICAL FRONTS 2021. [DOI: 10.1055/s-0041-1740050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The indole scaffold is one of the most important heterocyclic ring systems for pharmaceutical development, and serves as an active moiety in several clinical drugs. Fungi derived from marine origin are more liable to produce novel indole-containing natural products due to their extreme living environments. The indole alkaloids from marine fungi have drawn considerable attention for their unique chemical structures and significant biological activities. This review attempts to provide a summary of the structural diversity of marine fungal indole alkaloids including prenylated indoles, diketopiperazine indoles, bisindoles or trisindoles, quinazoline-containing indoles, indole-diterpenoids, and other indoles, as well as their known biological activities, mainly focusing on cytotoxic, kinase inhibitory, antiinflammatory, antimicrobial, anti-insecticidal, and brine shrimp lethal effects. A total of 306 indole alkaloids from marine fungi have been summarized, covering the references published from 1995 to early 2021, expecting to be beneficial for drug discovery in the future.
Collapse
Affiliation(s)
- Jiao Li
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chun-Lin Zhuang
- Department of Natural Product Chemistry, School of Pharmacy, The Second Military Medical University, Shanghai, People's Republic of China
- Department of Medicinal Chemistry, School of Pharmacy, Ningxia Medical University, Yinchuan, People's Republic of China
| |
Collapse
|
9
|
Hu Y, Chen S, Yang F, Dong S. Marine Indole Alkaloids-Isolation, Structure and Bioactivities. Mar Drugs 2021; 19:658. [PMID: 34940657 PMCID: PMC8708922 DOI: 10.3390/md19120658] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022] Open
Abstract
Indole alkaloids are heterocyclic natural products with extensive pharmacological activities. As an important source of lead compounds, many clinical drugs have been derived from natural indole compounds. Marine indole alkaloids, from unique marine environments with high pressure, high salt and low temperature, exhibit structural diversity with various bioactivities, which attracts the attention of drug researchers. This article is a continuation of the previous two comprehensive reviews and covers the literature on marine indole alkaloids published from 2015 to 2021, with 472 new or structure-revised compounds categorized by sources into marine microorganisms, invertebrates, and plant-derived. The structures and bioactivities demonstrated in this article will benefit the synthesis and pharmacological activity study for marine indole alkaloids on their way to clinical drugs.
Collapse
Affiliation(s)
| | | | | | - Shuai Dong
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China; (Y.H.); (S.C.); (F.Y.)
| |
Collapse
|
10
|
Mbaoji FN, Nweze JA, Yang L, Huang Y, Huang S, Onwuka AM, Peter IE, Mbaoji CC, Jiang M, Zhang Y, Pan L, Yang D. Novel Marine Secondary Metabolites Worthy of Development as Anticancer Agents: A Review. Molecules 2021; 26:molecules26195769. [PMID: 34641312 PMCID: PMC8510081 DOI: 10.3390/molecules26195769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Secondary metabolites from marine sources have a wide range of biological activity. Marine natural products are promising candidates for lead pharmacological compounds to treat diseases that plague humans, including cancer. Cancer is a life-threatening disorder that has been difficult to overcome. It is a long-term illness that affects both young and old people. In recent years, significant attempts have been made to identify new anticancer drugs, as the existing drugs have been useless due to resistance of the malignant cells. Natural products derived from marine sources have been tested for their anticancer activity using a variety of cancer cell lines derived from humans and other sources, some of which have already been approved for clinical use, while some others are still being tested. These compounds can assault cancer cells via a variety of mechanisms, but certain cancer cells are resistant to them. As a result, the goal of this review was to look into the anticancer potential of marine natural products or their derivatives that were isolated from January 2019 to March 2020, in cancer cell lines, with a focus on the class and type of isolated compounds, source and location of isolation, cancer cell line type, and potency (IC50 values) of the isolated compounds that could be a guide for drug development.
Collapse
Affiliation(s)
- Florence Nwakaego Mbaoji
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China; (F.N.M.); (J.A.N.); (Y.H.); (S.H.)
- College of Life Science and Technology of Guangxi University, Nanning 530004, China
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; (A.M.O.); (I.E.P.); (C.C.M.)
| | - Justus Amuche Nweze
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China; (F.N.M.); (J.A.N.); (Y.H.); (S.H.)
- Department of Science Laboratory Technology, Faculty of Physical Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia in Ceske Budejovice, 37005 Ceske Budejovice, Czech Republic
- Soil and Water Research Infrastructure, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| | - Liyan Yang
- Guangxi Biomass Industrialization Engineering Institute, National Engineering Research Center of Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass, Guangxi Academy of Sciences, Nanning 530007, China;
| | - Yangbin Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China; (F.N.M.); (J.A.N.); (Y.H.); (S.H.)
| | - Shushi Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China; (F.N.M.); (J.A.N.); (Y.H.); (S.H.)
| | - Akachukwu Marytheresa Onwuka
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; (A.M.O.); (I.E.P.); (C.C.M.)
| | - Ikechukwu Emmanuel Peter
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; (A.M.O.); (I.E.P.); (C.C.M.)
| | - Cynthia Chioma Mbaoji
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; (A.M.O.); (I.E.P.); (C.C.M.)
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning 530008, China;
| | - Yunkai Zhang
- College of Life Science and Technology of Guangxi University, Nanning 530004, China
- Correspondence: (Y.Z.); (L.P.); (D.Y.); Tel.: +86-771-2503980 (L.P.); +86-771-2536109 (D.Y.)
| | - Lixia Pan
- Guangxi Biomass Industrialization Engineering Institute, National Engineering Research Center of Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass, Guangxi Academy of Sciences, Nanning 530007, China;
- Correspondence: (Y.Z.); (L.P.); (D.Y.); Tel.: +86-771-2503980 (L.P.); +86-771-2536109 (D.Y.)
| | - Dengfeng Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China; (F.N.M.); (J.A.N.); (Y.H.); (S.H.)
- Correspondence: (Y.Z.); (L.P.); (D.Y.); Tel.: +86-771-2503980 (L.P.); +86-771-2536109 (D.Y.)
| |
Collapse
|
11
|
Jiang M, Wu Z, Liu L, Chen S. The chemistry and biology of fungal meroterpenoids (2009-2019). Org Biomol Chem 2021; 19:1644-1704. [PMID: 33320161 DOI: 10.1039/d0ob02162h] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fungal meroterpenoids are secondary metabolites from mixed terpene-biosynthetic origins. Their intriguing chemical structural diversification and complexity, potential bioactivities, and pharmacological significance make them attractive targets in natural product chemistry, organic synthesis, and biosynthesis. This review provides a systematic overview of the isolation, chemical structural features, biological activities, and fungal biodiversity of 1585 novel meroterpenoids from 79 genera terrestrial and marine-derived fungi including macrofungi, Basidiomycetes, in 441 research papers in 2009-2019. Based on the nonterpenoid starting moiety in their biosynthesis pathway, meroterpenoids were classified into four categories (polyketide-terpenoid, indole-, shikimate-, and miscellaneous-) with polyketide-terpenoids (mainly tetraketide-) and shikimate-terpenoids as the primary source. Basidiomycota produced 37.5% of meroterpenoids, mostly shikimate-terpenoids. The genera of Ganoderma, Penicillium, Aspergillus, and Stachybotrys are the four dominant producers. Moreover, about 56% of meroterpenoids display various pronounced bioactivities, including cytotoxicity, enzyme inhibition, antibacterial, anti-inflammatory, antiviral, antifungal activities. It's exciting that several meroterpenoids including antroquinonol and 4-acetyl antroquinonol B were developed into phase II clinically used drugs. We assume that the chemical diversity and therapeutic potential of these fungal meroterpenoids will provide biologists and medicinal chemists with a large promising sustainable treasure-trove for drug discovery.
Collapse
Affiliation(s)
- Minghua Jiang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Zhenger Wu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China. and Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| |
Collapse
|
12
|
Chaiyosang B, Kanokmedhakul K, Yodsing N, Boonlue S, Yang JX, Wang YA, Andersen RJ, Yahuafai J, Kanokmedhakul S. Three new indole diterpenoids from Aspergillus aculeatus KKU-CT2. Nat Prod Res 2021; 36:4973-4981. [PMID: 34096406 DOI: 10.1080/14786419.2021.1914613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Three new indole diterpenoids, aculeatupenes A-C (1-3), together with four known compounds (4-7), were isolated from the mycelium of Aspergillus aculeatus KKU-CT2. Their structures were established by spectroscopic evidence and absolute configurations of 1-3 were determined by comparison of their experimental and calculated ECD spectra. Compounds 1, 2, and emindole SB (4) showed weak cytotoxicity against HelaS3, KB, HepG2, MCF-7, and A549 cancer cell lines with IC50 values in the range of 11.12-67.81 μM. Compound 3 showed weak cytotoxicity against HelaS3 cell lines with an IC50 value of 17.48 μM but non-cytotoxicity against Vero cell line. In addition, compound 1 exhibited weak antibacterial activity against Bacillus cereus.
Collapse
Affiliation(s)
- Boonyanoot Chaiyosang
- Natural Products Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Kwanjai Kanokmedhakul
- Natural Products Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Natanong Yodsing
- Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima, Thailand
| | - Sophon Boonlue
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Jian-Xiong Yang
- Departments of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Yan Alexander Wang
- Departments of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Raymond J Andersen
- Departments of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Jantana Yahuafai
- Natural Products Research Section, Research Division, National Cancer Institute, Bangkok, Thailand
| | - Somdej Kanokmedhakul
- Natural Products Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
13
|
Meng ZH, Sun TT, Zhao GZ, Yue YF, Chang QH, Zhu HJ, Cao F. Marine-derived fungi as a source of bioactive indole alkaloids with diversified structures. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:44-61. [PMID: 37073395 PMCID: PMC10077242 DOI: 10.1007/s42995-020-00072-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/09/2020] [Indexed: 05/03/2023]
Abstract
Marine-derived fungi are well known as rich sources of bioactive natural products. Growing evidences indicated that indole alkaloids, isolated from a variety of marine-derived fungi, have attracted considerable attention for their diverse, challenging structural complexity and promising bioactivities, and therefore, indole alkaloids have potential to be pharmaceutical lead compounds. Systemic compilation of the relevant literature. In this review, we demonstrated a comprehensive overview of 431 new indole alkaloids from 21 genera of marine-derived fungi with an emphasis on their structures and bioactivities, covering literatures published during 1982-2019.
Collapse
Affiliation(s)
- Zhi-Hui Meng
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| | - Tian-Tian Sun
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| | - Guo-Zheng Zhao
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| | - Yu-Fei Yue
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| | - Qing-Hua Chang
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| | - Hua-Jie Zhu
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| | - Fei Cao
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002 China
| |
Collapse
|
14
|
Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep 2021; 38:362-413. [PMID: 33570537 DOI: 10.1039/d0np00089b] [Citation(s) in RCA: 220] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review covers the literature published in 2019 for marine natural products (MNPs), with 719 citations (701 for the period January to December 2019) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 440 papers for 2019), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Methods used to study marine fungi and their chemical diversity have also been discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
15
|
Tang X, Zhang F, Zeng T, Li W, Yin S, Wu R. Enzymatic Plasticity Inspired by the Diterpene Cyclase CotB2. ACS Chem Biol 2020; 15:2820-2832. [PMID: 32986400 DOI: 10.1021/acschembio.0c00645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enzymatic plasticity, as a modern term referring to the functional conversion of an enzyme, is significant for enzymatic activity redesign. The bacterial diterpene cyclase CotB2 is a typical plastic enzyme by which its native form precisely conducts a chemical reaction while its mutants diversify the catalytic functions drastically. Many efforts have been made to disclose the mysteries of CotB2 enzyme catalysis. However, the catalytic details and regulatory mechanism toward the precise chemo- and stereoselectivity are still elusive. In this work, multiscale simulations are employed to illuminate the biocyclization mechanisms of the linear substrate into the final product cyclooctat-9-en-7-ol with a 5-8-5 fused ring scaffold, and the derailment products arising from the premature quenching of reactive carbocation intermediates are also discussed. The two major regulatory factors, local electrostatic stabilization effects from aromatic residues or polar residue in pocket and global features of active site including pocket-contour and pocket-hydrophobicity, are responsible for the enzymatic plasticity of CotB2. Further comparative studies of representative Euphorbiaceae and fungal diterpene cyclase (RcCS and PaFS) show a correlation between pocket plasticity and product diversity, which inspires a tentative enzyme product prediction and the rational diterpene cyclases' reengineering in the future.
Collapse
Affiliation(s)
- Xiaowen Tang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Fan Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Tao Zeng
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wei Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Sheng Yin
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ruibo Wu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
16
|
Jiang M, Wu Z, Guo H, Liu L, Chen S. A Review of Terpenes from Marine-Derived Fungi: 2015-2019. Mar Drugs 2020; 18:E321. [PMID: 32570903 PMCID: PMC7345631 DOI: 10.3390/md18060321] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
Marine-derived fungi are a significant source of pharmacologically active metabolites with interesting structural properties, especially terpenoids with biological and chemical diversity. In the past five years, there has been a tremendous increase in the rate of new terpenoids from marine-derived fungi being discovered. In this updated review, we examine the chemical structures and bioactive properties of new terpenes from marine-derived fungi, and the biodiversity of these fungi from 2015 to 2019. A total of 140 research papers describing 471 new terpenoids of six groups (monoterpenes, sesquiterpenes, diterpenes, sesterterpenes, triterpenes, and meroterpenes) from 133 marine fungal strains belonging to 34 genera were included. Among them, sesquiterpenes, meroterpenes, and diterpenes comprise the largest proportions of terpenes, and the fungi genera of Penicillium, Aspergillus, and Trichoderma are the dominant producers of terpenoids. The majority of the marine-derived fungi are isolated from live marine matter: marine animals and aquatic plants (including mangrove plants and algae). Moreover, many terpenoids display various bioactivities, including cytotoxicity, antibacterial activity, lethal toxicity, anti-inflammatory activity, enzyme inhibitor activity, etc. In our opinion, the chemical diversity and biological activities of these novel terpenoids will provide medical and chemical researchers with a plenty variety of promising lead compounds for the development of marine drugs.
Collapse
Affiliation(s)
- Minghua Jiang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (M.J.); (Z.W.); (H.G.); (L.L.)
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Zhenger Wu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (M.J.); (Z.W.); (H.G.); (L.L.)
| | - Heng Guo
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (M.J.); (Z.W.); (H.G.); (L.L.)
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (M.J.); (Z.W.); (H.G.); (L.L.)
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (M.J.); (Z.W.); (H.G.); (L.L.)
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| |
Collapse
|
17
|
Chemical Diversity and Biological Activities of Meroterpenoids from Marine Derived-Fungi: A Comprehensive Update. Mar Drugs 2020; 18:md18060317. [PMID: 32549331 PMCID: PMC7345968 DOI: 10.3390/md18060317] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/06/2020] [Accepted: 06/12/2020] [Indexed: 12/25/2022] Open
Abstract
Meroterpenoids are a class of hybrid natural products, partially derived from a mixed terpenoid pathway. They possess remarkable structural features and relevant biological and pharmacological activities. Marine-derived fungi are a rich source of meroterpenoids featuring structural diversity varying from simple to complex molecular architectures. A combination of a structural variability and their myriad of bioactivities makes meroterpenoids an interesting class of naturally occurring compounds for chemical and pharmacological investigation. In this review, a comprehensive literature survey covering the period of 2009–2019, with 86 references, is presented focusing on chemistry and biological activities of various classes of meroterpenoids isolated from fungi obtained from different marine hosts and environments.
Collapse
|
18
|
Cheng Z, Li Y, Xu W, Liu W, Liu L, Zhu D, Kang Y, Luo Z, Li Q. Three new cyclopiane-type diterpenes from a deep-sea derived fungus Penicillium sp. YPGA11 and their effects against human esophageal carcinoma cells. Bioorg Chem 2019; 91:103129. [PMID: 31374522 DOI: 10.1016/j.bioorg.2019.103129] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 02/06/2023]
Abstract
Cyclopianes, featuring a highly rigid 6/5/5/5-fused tetracyclic framework, are structurally unique and biologically significant and belong to a rarely reported diterpenoid family. Chemical investigation of an EtOAc extract of a deep-sea-derived Penicillium sp. led to the isolation of three new cyclopiane diterpenes, namely, conidiogenols C-D (1-2) and conidiogenone L (3). The structures were determined by extensive analyses of the spectroscopic data in association with ECD calculations and chemical conversion for configurational assignments. Compound 1 represents the second example of cyclopianes bearing a hydroxyl group at C-13. Compound 2, the third example of conidiogenols, possesses a distinct α-oriented 1-hydroxy group relative to other analogues. The bioassay study demonstrated that compounds 2 and 4-6 exhibited moderate inhibitory effects against five esophageal cancer cell lines with IC50 values ranging from 25 to 55 μM. The cytotoxicities of all compounds toward esophageal cancer cell lines were evaluated for the first time.
Collapse
Affiliation(s)
- Zhongbin Cheng
- School of Pharmacy, Henan University, Kaifeng 475004, China; Eucommia Ulmoides Cultivation and Utilization of Henan Engineering Laboratory, Kaifeng 475004, China.
| | - Yuanli Li
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Wei Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Wan Liu
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Lijun Liu
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Daigui Zhu
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Ying Kang
- State Key Laboratory of Natural and Biomimetic Drugs, Institute of Ocean Research, Peking University, Beijing 100191, China
| | - Zhuhua Luo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Qin Li
- School of Pharmacy, Henan University, Kaifeng 475004, China; Eucommia Ulmoides Cultivation and Utilization of Henan Engineering Laboratory, Kaifeng 475004, China.
| |
Collapse
|
19
|
Butenolide Derivatives with α-Glucosidase Inhibitions from the Deep-Sea-Derived Fungus Aspergillus terreus YPGA10. Mar Drugs 2019; 17:md17060332. [PMID: 31163670 PMCID: PMC6627487 DOI: 10.3390/md17060332] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 01/30/2023] Open
Abstract
Three new butenolide derivatives, namely aspernolides N–P (1–3), together with six known analogues (4–9), were isolated from the ethyl acetate (EtOAc) extract of the deep sea-derived fungus Aspergillus terreus YPGA10. The structures of compounds 1–3 were determined on the basis of comprehensive analyses of the nuclear magnetic resonance (NMR) and mass spectroscopy (MS) data, and the absolute configurations of 1 and 2 were determined by comparisons of experimental electronic circular dichroism (ECD) with calculated ECD spectra. Compound 1 represents the rare example of Aspergillus-derived butenolide derivatives featured by a monosubstituted benzene ring. Compounds 6–9 exhibited remarkable inhibitory effects against α-glucosidase with IC50 values of 3.87, 1.37, 6.98, and 8.06 μM, respectively, being much more active than the positive control acarbose (190.2 μM).
Collapse
|
20
|
Cheng Z, Xu W, Liu L, Li S, Yuan W, Luo Z, Zhang J, Cheng Y, Li Q. Peniginsengins B⁻E, New Farnesylcyclohexenones from the Deep Sea-Derived Fungus Penicillium sp. YPGA11. Mar Drugs 2018; 16:md16100358. [PMID: 30275364 PMCID: PMC6213461 DOI: 10.3390/md16100358] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/21/2018] [Accepted: 09/27/2018] [Indexed: 11/17/2022] Open
Abstract
Chemical examination of the EtOAc extract of the deep sea-derived fungus Penicillium sp. YPGA11 resulted in the isolation of four new farnesylcyclohexenones, peniginsengins B–E (1–4), and a known analog peniginsengin A (5). The structures of compounds 1–4 were determined on the basis of comprehensive analyses of the nuclear magnetic resonance (NMR) and mass spectroscopy (MS) data, and the absolute configurations of 1, 2, and 4 were determined by comparisons of experimental electronic circular dichroism (ECD) with calculated ECD spectra. Compounds 1–5, characterized by a highly oxygenated 1-methylcyclohexene unit and a (4E,8E)-4,8-dimethyldeca-4,8-dienoic acid side chain, are rarely found in nature. Compounds 2–4 exhibited antibacterial activity against Staphylococcus aureus.
Collapse
Affiliation(s)
- Zhongbin Cheng
- College of Pharmacy, Henan University, Kaifeng 475004, China.
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Wei Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China.
| | - Lijun Liu
- College of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Shumin Li
- College of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Wangjun Yuan
- College of Pharmacy, Henan University, Kaifeng 475004, China.
- Eucommia Ulmoides Cultivation and Utilization of Henan Engineering Laboratory, Kaifeng 475004, China.
| | - Zhuhua Luo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China.
| | - Jingjie Zhang
- College of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Yongjun Cheng
- College of Pharmacy, Henan University, Kaifeng 475004, China.
| | - Qin Li
- College of Pharmacy, Henan University, Kaifeng 475004, China.
- Eucommia Ulmoides Cultivation and Utilization of Henan Engineering Laboratory, Kaifeng 475004, China.
| |
Collapse
|