1
|
Ilić D, Karaman M, Bogavac M, Mišković J, Rašeta M. Bioactivity Profiling of Daedaleopsis confragosa (Bolton) J. Schröt. 1888: Implications for Its Possible Application in Enhancing Women's Reproductive Health. Pharmaceuticals (Basel) 2024; 17:600. [PMID: 38794170 PMCID: PMC11123820 DOI: 10.3390/ph17050600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
This study investigates the bioactivity profile of wood-rotting fungal species Daedaleopsis confragosa (Bolton) J. Schröt. 1888, focusing on its antioxidant, cytotoxic, and genotoxic activities and enzyme modulation properties with respect to its possible application in terms of enhancing women's reproductive health. Two types of extracts, including those based on EtOH extraction (DC) and hydrodistillation (DCHD), were investigated. The results indicate that the radical scavenging capacity against the DPPH radical and reduction potential were stronger in the DC extracts owing to the higher total phenolic content (TPC) and total flavonoid content (TFC) (25.30 ± 1.05 mg GAE/g d.w. and 2.84 ± 0.85 mg QE/g d.w., respectively). The same trend was observed in the protein phosphatase-1 (PP1) activity and in the genotoxic activity against the δ virus since only the DC extract exhibited DNA disintegration regarding a dilution of 1:100. Conversely, the DCHD extract exhibited increased hemolytic and cytotoxic effects (339.39% and IC50 = 27.76 ± 0.89 μg/mL-72 h incubation, respectively), along with greater inhibition of the AChE enzyme (IC50 = 3.11 ± 0.45 mg/mL) and hemolytic activity. These results suggest that terpenoids and steroids may be responsible for the observed activity in DCHD as these compounds could potentially be extracted following the HD procedure. This comprehensive bioactivity profiling offers valuable insights into the potential therapeutic applications of D. confragosa from Serbia and underscores the importance of further investigations for harnessing its pharmacological potential.
Collapse
Affiliation(s)
- Djordje Ilić
- Clinical Centre of Vojvodina, Department of Obstetrics and Gynecology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (D.I.); (M.B.)
| | - Maja Karaman
- ProFungi Laboratory, Department of Biology and Ecology, Faculty of Sciences University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia; (J.M.); (M.R.)
| | - Mirjana Bogavac
- Clinical Centre of Vojvodina, Department of Obstetrics and Gynecology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (D.I.); (M.B.)
| | - Jovana Mišković
- ProFungi Laboratory, Department of Biology and Ecology, Faculty of Sciences University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia; (J.M.); (M.R.)
| | - Milena Rašeta
- ProFungi Laboratory, Department of Biology and Ecology, Faculty of Sciences University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia; (J.M.); (M.R.)
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| |
Collapse
|
2
|
Rašeta M, Kebert M, Mišković J, Rakić M, Kostić S, Čapelja E, Karaman M. Polyamines in Edible and Medicinal Fungi from Serbia: A Novel Perspective on Neuroprotective Properties. J Fungi (Basel) 2023; 10:21. [PMID: 38248931 PMCID: PMC10816940 DOI: 10.3390/jof10010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
The therapeutic effectiveness of current neurodegenerative disease treatments is still under debate because of problems with bioavailability and a range of side effects. Fungi, which are increasingly recognized as sources of natural antioxidants and acetylcholinesterase (AChE) enzyme inhibitors, may thus serve as potent neuroprotective agents. Previous studies have associated the anti-AChE and antioxidant activities of fungi mostly with polysaccharides and phenolic compounds, while other secondary metabolites such as polyamines (PAs) have been neglected. This study aimed to investigate eight edible and medicinal fungi from Serbia, marking the initial investigation into the neuroprotective capabilities of Postia caesia, Clitocybe odora, Clitopilus prunulus, and Morchella elata. Neuroprotective activity was examined using the Ellman assay, while the antioxidant capacity was tested by conducting DPPH, NO, ABTS, and FRAP tests. PA levels were determined by high-performance liquid chromatography (HPLC) coupled with fluorescent detection. Ganoderma applanatum and Lepista nuda exhibited the most robust anti-AChE (98.05 ± 0.83% and 99.94 ± 3.10%, respectively) and antioxidant activities, attributed to the synergistic effects of the total protein, total phenolic, and PA levels. Furthermore, P. caesia displayed significant AChE inhibition (88.21 ± 4.76%), primarily linked to the elevated spermidine (SPD) (62.98 ± 3.19 mg/kg d.w.) and putrescine (PUT) levels (55.87 ± 3.16 mg/kg d.w.). Our results highlight the need for thorough research to comprehend the intricate relationships between distinct fungus species and AChE inhibition. However, it is important to recognize that more research is required to identify the precise substances causing the reported inhibitory effects.
Collapse
Affiliation(s)
- Milena Rašeta
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia
| | - Marko Kebert
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13d, 21000 Novi Sad, Serbia (S.K.)
| | - Jovana Mišković
- ProFungi Laboratory, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia (M.R.); (E.Č.); (M.K.)
| | - Milana Rakić
- ProFungi Laboratory, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia (M.R.); (E.Č.); (M.K.)
| | - Saša Kostić
- Institute of Lowland Forestry and Environment, University of Novi Sad, Antona Čehova 13d, 21000 Novi Sad, Serbia (S.K.)
| | - Eleonora Čapelja
- ProFungi Laboratory, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia (M.R.); (E.Č.); (M.K.)
| | - Maja Karaman
- ProFungi Laboratory, Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia (M.R.); (E.Č.); (M.K.)
| |
Collapse
|
3
|
Tel-Çayan G, Deveci E, Çayan F. Study on Phenolic and Organic Acid Compositions and Antioxidant and Enzyme Inhibition Activities of Agaricomycetes Mushroom Species from Turkey. Int J Med Mushrooms 2023; 25:11-25. [PMID: 37831509 DOI: 10.1615/intjmedmushrooms.2023050127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Mushrooms stand out as one of nature's best gifts among the natural product sources with their diversity, therapeutic values and increasing popularity. In this study, antioxidant (ABTS·+ scavenging, β-carotene-bleaching, cupric-reducing antioxidant capacity (CUPRAC), DPPH· scavenging, and metal chelating assays), and enzyme (buty-rylcholinesterase (BChE) and acetylcholinesterase (AChE), α-amylase and α-glucosidase) inhibition activities of the extracts obtained from Coprinus comatus (O.F. Müll.) Pers., Cerrena unicolor (Bull.) Murrill, Inocutis rheades (Pers.) Fiasson & Niemela and Leptoporus mollis (Pers.) Quél. mushroom species were investigated. The presence of phenolic and organic acid compounds associated with the bioactive properties of the mushroom species was determined by HPLC-DAD. Fumaric acid was found to be prominent compound in C. comatus (43.90 µg/g dw) and C. unicolor (659.9 µg/g dw), vanillin in L. mollis (19.48 µg/g dw), and p-coumaric acid in I. rheades (21.32 µg/g dw). L. mollis methanol extract, as well as higher antioxidant activity than the standards in CUPRAC and β-carotene-bleaching assays, was noted as superior antioxidant active in all assays (except metal chelating). C. comatus possessed the highest inhibition activity on α-amylase (IC50: 0.23 mg/mL for methanol extract), AChE (IC50: 125.50 µg/mL for hexane extract), and BChE (IC50: 61.03 µg/mL for methanol extract). Also, C. comatus methanol (IC50: 0.09 mg/mL) and L. mollis hexane (IC50 : 0.11 mg/ mL) extracts were better α-glucosidase inhibition active than the acarbose (IC50: 0.37 mg/mL). Our study ascertained that the studied mushroom species are particularly sources of biochemically active compounds with therapeutic potential.
Collapse
Affiliation(s)
- Gülsen Tel-Çayan
- Department of Chemistry and Chemical Processing Technologies, Muğla Vocational School, Muğla Sıtkı Koçman University, 48000 Muğla, Turkey
| | - Ebru Deveci
- Chemistry and Chemical Processing Technology Department, Technical Sciences Vocational School, Konya Technical University, 42250 Konya, Turkey
| | - Fatih Çayan
- Department of Chemistry and Chemical Processing Technologies, Muğla Vocational School, Muğla Sıtkı Koçman University, 48000 Muğla, Turkey
| |
Collapse
|
4
|
Gafforov Y, Rašeta M, Yarasheva M, Wan-Mohtar WAAQI, Rapior S. Coprinus comatus (O.F. Müll.) Pers. - AGARICACEAE. ETHNOBIOLOGY OF UZBEKISTAN 2023:993-1010. [DOI: 10.1007/978-3-031-23031-8_104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
5
|
Atlagić K, Živić M, Jakovljević D, Marković Filipović J, Šibul F, Pejin B, Karaman M. Cytotoxic activity of the crude polysaccharides/exopolysaccharides of Coprinus comatus and Coprinellus truncorum. Nat Prod Res 2022; 37:1838-1843. [PMID: 36054821 DOI: 10.1080/14786419.2022.2118743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Fungi are an important source of polysaccharides (PSH) and phenolic compounds (PC). Numerous studies have highlighted the beneficial effects of fungal consumption, but the impact of submerged cultivated mycelia (M) and filtrate (F) has not been fully investigated. We aimed to investigate the cytotoxic activity of isolated crude PSH and exopolysaccharides (ePSH) of submerged cultivated M and F of edible Coprinus comatus and Coprinellus truncorum species. Both PSH and ePSH exhibited significant cytotoxic activity towards HepG2 cancer cells of human origin (three-way ANOVA). The C. truncorum PSH/ePSH was more efficient inducing maximal reduction in cell viability (≈50% at 450 µg/mL) after 24 h while C. comatus PSH/ePSH needed 72 h to reach similar effect (≈60% at 450 µg/mL). Partial least square regression (PLSR) analysis indicated that specific phenolic composition of the PSH/ePSH could be responsible for the difference in their activity.
Collapse
Affiliation(s)
- Kristina Atlagić
- Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Miroslav Živić
- Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Dragica Jakovljević
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy - ICTM, University of Belgrade, Belgrade, Serbia
| | | | - Filip Šibul
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| | - Boris Pejin
- Department of Life Sciences, Institute for Multidisciplinary Research - IMSI, University of Belgrade, Belgrade, Serbia
| | - Maja Karaman
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
6
|
Zawadzka A, Kobus-Cisowska J, Szwajgier D, Szczepaniak O, Szulc P, Siwulski M. Dual functional cholinesterase inhibitors and complexing of aluminum ions of five species of fungi family depended of drying conditions and extraction process - In vitro study. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Bhat IUH, Bhat R. Quercetin: A Bioactive Compound Imparting Cardiovascular and Neuroprotective Benefits: Scope for Exploring Fresh Produce, Their Wastes, and By-Products. BIOLOGY 2021; 10:586. [PMID: 34206761 PMCID: PMC8301140 DOI: 10.3390/biology10070586] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/16/2022]
Abstract
Quercetin, a bioactive secondary metabolite, holds incredible importance in terms of bioactivities, which has been proved by in vivo and in vitro studies. The treatment of cardiovascular and neurological diseases by quercetin has been extensively investigated over the past decade. Quercetin is present naturally in appreciable amounts in fresh produce (fruits and vegetables). However, today, corresponding to the growing population and global demand for fresh fruits and vegetables, a paradigm shift and focus is laid towards exploring industrial food wastes and/or byproducts as a new resource to obtain bioactive compounds such as quercetin. Based on the available research reports over the last decade, quercetin has been suggested as a reliable therapeutic candidate for either treating or alleviating health issues, mainly those of cardiovascular and neurological diseases. In the present review, we have summarized some of the critical findings and hypotheses of quercetin from the available databases foreseeing its future use as a potential therapeutic agent to treat cardiovascular and neurological diseases. It is anticipated that this review will be a potential reference material for future research activities to be undertaken on quercetin obtained from fresh produce as well as their respective processing wastes/byproducts that rely on the circular concept.
Collapse
Affiliation(s)
- Irshad Ul Haq Bhat
- ERA-Chair for Food (By-) Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, 51006 Tartu, Estonia;
| | | |
Collapse
|
8
|
Rai SN, Mishra D, Singh P, Vamanu E, Singh MP. Therapeutic applications of mushrooms and their biomolecules along with a glimpse of in silico approach in neurodegenerative diseases. Biomed Pharmacother 2021; 137:111377. [PMID: 33601145 DOI: 10.1016/j.biopha.2021.111377] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/29/2021] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
Neurodegenerative diseases (NDs) represent a common neurological pathology that determines a progressive deterioration of the brain or the nervous system. For treating NDs, comprehensive and alternative medicines have attracted scientific researchers' attention recently. Edible mushrooms are essential for preventing several age-based neuronal dysfunctions such as Parkinson's and Alzheimer's diseases. Mushroom such as Grifola frondosa, Lignosus rhinocerotis, Hericium erinaceus, may improve cognitive functions. It has also been reported that edible mushrooms (basidiocarps/mycelia extracts or isolated bioactive compounds) may reduce beta-amyloid-induced neurotoxicity. Medicinal mushrooms are being used for novel and natural compounds that help modulate immune responses and possess anti-cancer, anti-microbial, and anti-oxidant properties. Compounds such as polyphenols, terpenoids, alkaloids, sesquiterpenes, polysaccharides, and metal chelating agents are validated in different ND treatments. This review aims to assess mushrooms' role and their biomolecules utilization for treating different kinds of NDs. The action mechanisms, presented here, including reducing oxidative stress, neuroinflammation, and modulation of acetylcholinesterase activity, protecting neurons or stimulation, and regulating neurotrophins synthesis. We also provide background about neurodegenerative diseases and in-silico techniques of the drug research. High costs associated with experiments and current ethical law imply efficient alternatives with limited cost value. In silico approaches provide an alternative method with low cost that has been successfully implemented to cure ND disorders in recent days. We also describe the applications of computational procedures such as molecular docking, virtual high-throughput screening, molecular dynamic (MD) simulation, quantum-mechanical methods for drug design. They were reported against various targets in NDs.
Collapse
Affiliation(s)
- Sachchida Nand Rai
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India.
| | - Divya Mishra
- Centre of Bioinformatics, University of Allahabad, Prayagraj 211002, India.
| | - Payal Singh
- Department of Zoology, MMV, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agronomic Science and Veterinary Medicine, 59 Marasti blvd, 1 district, 011464 Bucharest, Romania.
| | - M P Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India.
| |
Collapse
|
9
|
So HM, Lee S, Baek KH, Roh HS, Kim S, Jo MS, Baek SC, Seok S, Ryoo R, Kim KH. Bioactivity-based analysis and chemical characterization of cytotoxic compounds from a poisonous mushroom, Amanita spissacea, in human lung cancer cells in vitro. Nat Prod Res 2019; 35:649-654. [PMID: 30931629 DOI: 10.1080/14786419.2019.1586699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As part of our systematic study on Korean toxic mushrooms, bioactivity-guided fractionation of the MeOH extract of Amanita spissacea (Amanitaceae) fruiting bodies and chemical investigation of its cytotoxic fractions led to the isolation of (9E)-8-oxo-9-octadecenoic acid (1), (10E)-9-oxo-10-octadecenoic acid (2), (9E)-8-oxo-9-octadecenoate methyl ester (3), (9Z)-9-octadecenoate-(2'S)-2',3'-dihydroxypropyl ester (4), (9Z)-9-octadecenoic acid (5), and palmitic acid (6). The structures of the isolates were elucidated by NMR spectroscopic analysis and LC/MS analysis. Among the isolated compounds, compounds 1 and 2 exhibited the most potent cytotoxic activity in all human lung cancer cell lines examined, with IC50 values ranging from 255.7 to 321.0 μM and 250.2 to 322.5 μM, respectively. The cytotoxicity of these compounds was also found to be mediated by apoptosis associated with caspase-3 activation. These findings provide experimental evidence suggesting the potential of A. spissacea as a promising natural source for the discovery of novel anticancer drug candidates.
Collapse
Affiliation(s)
- Hae Min So
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seul Lee
- Department of Molecular and Cellular Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kwan-Hyuck Baek
- Department of Molecular and Cellular Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Hyun-Soo Roh
- Department of Molecular and Cellular Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Sil Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Mun Seok Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Su Cheol Baek
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Soonja Seok
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, RDA, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Rhim Ryoo
- Special Forest Products Division, Forest Bioresources Department, National Institute of Forest Science, Suwon, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
10
|
Li X, Zhang X, Pang L, Yao L, ShangGuan Z, Pan Y. Agaricus bisporus-derived β-glucan enter macrophages and adipocytes by CD36 receptor. Nat Prod Res 2019; 34:3253-3256. [PMID: 30676779 DOI: 10.1080/14786419.2018.1556654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
β-glucans are a heterogeneous group of natural polysaccharides. They are ubiquitously found in bacterial or fungal cell walls, cereals, seaweed, and mushrooms. The beneficial role of β-glucan in tumor, insulin resistance, dyslipidemia, hypertension, and obesity is being continuously documented. Ample evidence showed that β-glucan could act on several receptors, such as Dectin, complement receptor (CR3), TLR-2, 4, 6 and scavenger. Based on the above, we wanted to explore whether agaricus bisporus-derived β-glucan acted on these receptors on Raw 264.7 macrophages and 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Xiumin Li
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, China
| | - Xiufen Zhang
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, China
| | - Liang Pang
- The College of Physical Education, Minnan Normal University, Zhangzhou, China
| | - Liyun Yao
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, China
| | - Zhaoshui ShangGuan
- Central Laboratory, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yutian Pan
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, China
| |
Collapse
|