1
|
Mansour KA, El-Mahis AA, Farag MA. Headspace aroma and secondary metabolites profiling in 3 Pelargonium taxa using a multiplex approach of SPME-GC/MS and high resolution-UPLC/MS/MS coupled to chemometrics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1012-1024. [PMID: 39297404 DOI: 10.1002/jsfa.13892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/26/2024] [Accepted: 08/22/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND The present study focuses on the aroma and secondary metabolites profiling of three Pelargonium graveolens cultivars, baladi (GRB), sondos (GRS) and shish (GRSH), grown in Egypt. Utilizing a multiplex approach combining high resolution-ultraperformance liquid chromatography (HR-UPLC)/tandem mass spectrometry (MS/MS) and gas chromatography (GC)-MS coupled with chemometrics, the study aims to identify and profile various secondary metabolites and aroma compounds in these cultivars. RESULTS HR-UPLC/MS/MS analysis led to the annotation of 111 secondary metabolites, including phenolics, flavonoids, terpenes and fatty acids, with several compounds being reported for the first time in geranium. Multivariate data analysis identified vinylanisole, dimethoxy-flavonol, and eicosadienoic acid as discriminatory metabolites among the cultivars, particularly distinguishing the GRS cultivar in its phenolics profile. In total, 34 aroma compounds were detected using headspace solid-phase microextraction coupled with GC-MS, including alcohols, esters, ketones, ethers and monoterpene hydrocarbons. The major metabolites contributing to aroma discrimination among the cultivars were β-citronellol in GRB, α-farnesene in GRS and isomenthone in GRSH. CONCLUSION The study provides a comprehensive profiling of the secondary metabolites and aroma compounds in the three Pelargonium graveolens cultivars. The GRS cultivar was identified as particularly distinct in both its phenolics and aroma profiles, suggesting its potential as a premium variety for cultivation and use. Future studies should focus on isolating and investigating the newly detected metabolites and exploring the biological effects of these compounds in food applications and other uses. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Khaled Ahmed Mansour
- Pharmacognosy Department, Faculty of Pharmacy, The university of Mashreq, Baghdad, Iraq
- Pharmacognosy Department, Faculty of Pharmacy, Horus University in Egypt, New Damietta, Egypt
| | - Amira Ali El-Mahis
- National Organization of Drug Control and Research (NODCAR), Egyptian Drug Authority (EDA), Giza, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Ebrahimi F, Habibi N, Hosseini M. Nano-Coating Loaded With Leaf and Flowers of Pelargonium graveolens Plant Extract Stabilized With Fenugreek Seed Gum and Soy Protein Isolate in Increasing the Shelf Life of Mutton Fillet. Food Sci Nutr 2025; 13:e4618. [PMID: 39803259 PMCID: PMC11717032 DOI: 10.1002/fsn3.4618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 01/16/2025] Open
Abstract
In this study, the extract of leaf and flower of Pelargonium graveolens was obtained using an ultrasonic-assisted extraction method. The extraction yield and the content of phenolic, flavonoid, and flavonol compounds in the flower extract were higher (13.93%, 74.97 mg GAE g DM-1, 31.93 mg QE g DM-1, and 9.08 mg QEE g DM-1) than leaf extract (10.69%, 67.46 mg GAE g DM-1, 23.04 mg QE g DM-1, and 11.34 mg QEE g DM-1). Both extracts demonstrated antioxidant properties in tests involving the scavenging of DPPH radicals and the ferric reduction assay. Extracts exhibited antimicrobial properties. MIC of flower extract against Staphylococcus aureus and Escherichia coli were 2500 and 5000, while MBC of leaf extract were 15,000, and 20,000 ppm, respectively. The concentration of 2000 ppm of extracts was encapsulated in fenugreek seed gum (FSG) and soy protein isolate (SPI) produced by the emulsification method. All nano-coatings exhibited a nanometric size range between 172.75 to 255.21 nm, and encapsulation efficiency higher than 80.0% (80.82% to 89.59%). The application of nano-coatings significantly reduced microbial counts and delayed lipid oxidation in mutton meat during 12 days of cold storage at 4°C, enhancing meat quality and extending shelf life. The inclusion of bioactive compounds like polyphenols in the coatings contributed to antimicrobial and antioxidant effects, decreasing pH levels and preventing spoilage. The findings indicated that the combination of edible FSG and SPI as wall materials with 2000 ppm of P. graveolens extract demonstrated efficacy in implementation bacterial growth and lipid oxidation in fresh mutton meat.
Collapse
Affiliation(s)
- Farzad Ebrahimi
- Department of Food Science and Technology, Sanandaj BranchIslamic Azad UniversitySanandajIran
| | - Nader Habibi
- Department of Food Science and Technology, Sanandaj BranchIslamic Azad UniversitySanandajIran
| | - Mohammadyar Hosseini
- Department of Food Science and Hygiene, Faculty of Veterinary ScienceIlam UniversityIlamIran
| |
Collapse
|
3
|
Gevrenova R, Zengin G, Balabanova V, Szakiel A, Zheleva-Dimitrova D. Pelargonium graveolens: Towards In-Depth Metabolite Profiling, Antioxidant and Enzyme-Inhibitory Potential. PLANTS (BASEL, SWITZERLAND) 2024; 13:2612. [PMID: 39339589 PMCID: PMC11434692 DOI: 10.3390/plants13182612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
Pelargonium graveolens L'Hèr. (Geraniaceae) is renowned for its traditional use as a flavor, ornamental and medicinal plant. This work aimed at an in-depth study of the phytochemical profiling and in vitro antioxidant and enzyme inhibition assessment of a methanol-aqueous extract from P. graveolens leaves. A UHPLC-HRMS analysis revealed more than 110 secondary metabolites, including 8 acyltartaric and 11 acylcitric/acylisocitric acids; 8 gallotannins; 36 flavonols, flavanones and methoxylated flavonoids together with 17 phenolic and aliphatic acids; and 21 phenolic acid glycosides. For the first time, acylcitric acids along with feruloyl- and coumaroyltartaric acids are reported in the species. The leaf extract actively scavenged 2,2-diphenyl-1-picrylhydrazyl DPPH (273.45 mg trolox equivalent (TE/g)) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+) radicals (531.97 mgTE/g) and showed a high reducing power: 431.32 mg TE/g Cupric reducing antioxidant capacity (CUPRAC) and 292.21 mg TE/g Ferric reducing antioxidant power (FRAP). It possessed a metal chelating capacity (13.44 ethylenediaminetetraacetic acid equivalent (EDTAE)/g) and contained 2.71 mmol TE/g in the phosphomolybdenum assay. The rose geranium extract exhibited high inhibition towards acetyl- and butyrylcholinesterase (2.80 and 2.20 mg galantamine equivalent (GALAE)/g, respectively) and tyrosinase (75.49 mg kojic acid equivalent (KAE)/g). It inhibited α-glucosidase and α-amylase (3.75 mmol and 0.79 acarbose equivalent (ACAE)/g, respectively) and lipase (28.91 mg orlistat equivalent (OE)/g). This study sheds light into the future potential application of the rose geranium in pharmaceutical and nutraceutical products.
Collapse
Affiliation(s)
- Reneta Gevrenova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (V.B.); (D.Z.-D.)
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey;
| | - Vessela Balabanova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (V.B.); (D.Z.-D.)
| | - Anna Szakiel
- Department of Plant Biochemistry, Faculty of Biology, University of Warsaw, 1 Miecznikowa Street, 02-096 11 Warsaw, Poland;
| | - Dimitrina Zheleva-Dimitrova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (V.B.); (D.Z.-D.)
| |
Collapse
|
4
|
de Lima PMN, Pereira TC, de Carvalho LS, dos Santos LF, Oliveira CER, Ramos LDP, Marcucci MC, Abu Hasna A, de Oliveira LD. Antimicrobial and synergistic effects of lemongrass and geranium essential oils against Streptococcus mutans, Staphylococcus aureus, and Candida spp. World J Crit Care Med 2024; 13:92531. [PMID: 39253314 PMCID: PMC11372514 DOI: 10.5492/wjccm.v13.i3.92531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/30/2024] [Accepted: 06/11/2024] [Indexed: 08/30/2024] Open
Abstract
BACKGROUND The oral cavity harbors more than 700 species of bacteria, which play crucial roles in the development of various oral diseases including caries, endodontic infection, periodontal infection, and diverse oral diseases. AIM To investigate the antimicrobial action of Cymbopogon Schoenanthus and Pelargonium graveolens essential oils against Streptococcus mutans, Staphylococcus aureus, Candida albicans, Ca. dubliniensis, and Ca. krusei. METHODS Minimum microbicidal concentration was determined following Clinical and Laboratory Standards Institute documents. The synergistic antimicrobial activity was evaluated using the Broth microdilution checkerboard method, and the antibiofilm activity was evaluated with the 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay. Data were analyzed by one-way analysis of variance followed by the Tukey post-hoc test (P ≤ 0.05). RESULTS C. schoenanthus and P. graveolens essential oils were as effective as 0.12% chlorhexidine against S. mutans and St. aureus monotypic biofilms after 24 h. After 24 h P. graveolens essential oil at 0.25% was more effective than the nystatin group, and C. schoenanthus essential oil at 0.25% was as effective as the nystatin group. CONCLUSION C. schoenanthus and P. graveolens essential oils are effective against S. mutans, St. aureus, Ca. albicans, Ca. dubliniensis, and Ca. krusei at different concentrations after 5 min and 24 h.
Collapse
Affiliation(s)
- Patrícia Michelle Nagai de Lima
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University, São José dos Campos 12245000, SP, Brazil
| | - Thaís Cristine Pereira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University, São José dos Campos 12245000, SP, Brazil
| | - Lara Steffany de Carvalho
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University, São José dos Campos 12245000, SP, Brazil
| | - Letícia Ferreira dos Santos
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University, São José dos Campos 12245000, SP, Brazil
| | | | - Lucas de Paula Ramos
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University, São José dos Campos 12245000, SP, Brazil
| | - Maria Cristina Marcucci
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University, São José dos Campos 12245000, SP, Brazil
| | - Amjad Abu Hasna
- Department of Restorative Dentistry, Endodontics Division, Institute of Science and Technology, São Paulo State University, São José dos Campos 12245000, São Paulo, Brazil
| | - Luciane Dias de Oliveira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University, São José dos Campos 12245000, SP, Brazil
| |
Collapse
|
5
|
M'hamdi Z, Davì F, Elhourri M, Amechrouq A, Mondello F, Cacciola F, Laganà Vinci R, Mondello L, Miceli N, Taviano MF. Phytochemical Investigations, Antioxidant and Insecticidal Properties of Essential Oil and Extracts from the Aerial Parts of Pelargonium graveolens from Morocco. Molecules 2024; 29:4036. [PMID: 39274883 PMCID: PMC11397698 DOI: 10.3390/molecules29174036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/10/2024] [Accepted: 08/17/2024] [Indexed: 09/16/2024] Open
Abstract
The essential oil and the aqueous and ethanolic extracts obtained from the aerial parts of Pelargonium graveolens cultivated in Morocco were studied for their antioxidant and insecticidal activity against rice weevils (Sitophylus oryzae). The total phenolic content of the extracts was determined by a spectrophotometric method and the phenolic compounds were extensively characterized by HPLC-PDA/ESI-MS. To evaluate antioxidant potential, three in vitro assays were used. In the DPPH test, the ethanolic extract was the most active, followed by the aqueous extract and the essential oil. In the reducing power assay, excellent activity was highlighted for both extracts, while in the Fe2+ chelating activity assay, weak activity was observed for both the essential oil and the ethanolic extract and no activity for the aqueous extract. Concerning insecticide activity, the toxicity of the essential oil and the extracts was tested against rice weevils; the lethal concentrations LC50 and LC99 were determined, as well as the lethal time required for the death of 50% (LT50) and 99% (LT99) of the weevils. The essential oil had the highest activity; 100% mortality of S. oryzae was observed around 5, 9, and 8 days for the essential oil and the aqueous and ethanolic extracts, respectively.
Collapse
Affiliation(s)
- Zakya M'hamdi
- Laboratory of Molecular Chemistry and Natural Substances, Faculty of Science, Moulay Ismail University, B.P. 11201, Zitoune, Meknes 50050, Morocco
| | - Federica Davì
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Foundation "Prof. Antonio Imbesi", University of Messina, 98122 Messina, Italy
| | - Mohammed Elhourri
- Laboratory of Molecular Chemistry and Natural Substances, Faculty of Science, Moulay Ismail University, B.P. 11201, Zitoune, Meknes 50050, Morocco
| | - Ali Amechrouq
- Laboratory of Molecular Chemistry and Natural Substances, Faculty of Science, Moulay Ismail University, B.P. 11201, Zitoune, Meknes 50050, Morocco
| | - Fabio Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy
| | - Roberto Laganà Vinci
- C/o Messina Institute of Technology (MeIT), Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Former Veterinary School, University of Messina, 98168 Messina, Italy
| | - Luigi Mondello
- C/o Messina Institute of Technology (MeIT), Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Former Veterinary School, University of Messina, 98168 Messina, Italy
- Chromaleont s.r.l., C/o Messina Institute of Technology (MeIT), Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Former Veterinary School, University of Messina, 98168 Messina, Italy
| | - Natalizia Miceli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Maria Fernanda Taviano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| |
Collapse
|
6
|
Celi D, Quiroz E, Beltrán-Noboa A, Machado A, Tejera E, Fernandez-Soto P. A chemical analysis of the Pelargonium species: P. odoratissimum, P. graveolens, and P. zonale identifies secondary metabolites with activity against gram-positive bacteria with multidrug-resistance. PLoS One 2024; 19:e0306637. [PMID: 38985712 PMCID: PMC11236107 DOI: 10.1371/journal.pone.0306637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024] Open
Abstract
The Pelargonium genus encompasses around 280 species, most of which are used for medicinal purposes. While P. graveolens, P. odoratissimum, and P. zonale are known to exhibit antimicrobial activity, there is an evident absence of studies evaluating all three species to understand their chemical differences and biological effects. Through the analysis of the hydroalcoholic extracts of P. graveolens, P. odoratissimum, and P. zonale, using HPLC-DAD-MS/MS, quercetin and kaempferol derivatives were identified in these three species. Conversely, gallotannins and anthocyanins were uniquely detected in P. zonale. P. graveolens stood out due to the various types of myricetin derivatives that were not detected in P. odoratissimum and P. zonale extracts. Evaluation of their biological activities revealed that P. zonale displayed superior antibacterial and antibiofilm activities in comparison to the other two species. The antibacterial efficacy of P. zonale was observed towards the clinically relevant strains of Staphylococcus aureus ATCC 25923, Methicillin-resistant Staphylococcus aureus (MRSA) 333, Enterococcus faecalis ATCC 29212, and the Vancomycin-resistant E. faecalis INSPI 032. Fractionation analysis of P. zonale suggested that the antibacterial activity attributed to this plant is due to the presence of quercetin derivatives and kaempferol and its derivatives, alongside their synergistic interaction with gallotannins and anthocyanins. Lastly, the three Pelargonium species exhibited notable antioxidant activity, which may be attributed to their high content of total phenolic compounds.
Collapse
Affiliation(s)
- Diana Celi
- Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas (UDLA), Quito, Ecuador
| | - Evelyn Quiroz
- Laboratorios de Investigación, Universidad de Las Américas (UDLA), Quito, Ecuador
| | - Andrea Beltrán-Noboa
- Grupo de Bioquimioinformática, Universidad de Las Américas (UDLA), Quito, Ecuador
- Departamento de Química Analítica, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bilbao, Spain
| | - António Machado
- Laboratorio de Bacteriología, Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Eduardo Tejera
- Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas (UDLA), Quito, Ecuador
- Grupo de Bioquimioinformática, Universidad de Las Américas (UDLA), Quito, Ecuador
| | - Paulina Fernandez-Soto
- Grupo de Bioquimioinformática, Universidad de Las Américas (UDLA), Quito, Ecuador
- Facultad de Ciencias de la Salud, Universidad de Las Américas (UDLA), Quito, Ecuador
| |
Collapse
|
7
|
Chiavaroli A, Libero ML, Di Simone SC, Acquaviva A, Nilofar, Recinella L, Leone S, Brunetti L, Cicia D, Izzo AA, Orlando G, Zengin G, Uba AI, Cakilcioğlu U, Mukemre M, Elkiran O, Menghini L, Ferrante C. Adding New Scientific Evidences on the Pharmaceutical Properties of Pelargonium quercetorum Agnew Extracts by Using In Vitro and In Silico Approaches. PLANTS (BASEL, SWITZERLAND) 2023; 12:1132. [PMID: 36903991 PMCID: PMC10005478 DOI: 10.3390/plants12051132] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 08/13/2023]
Abstract
Pelargonium quercetorum is a medicinal plant traditionally used for treating intestinal worms. In the present study, the chemical composition and bio-pharmacological properties of P. quercetorum extracts were investigated. Enzyme inhibition and scavenging/reducing properties of water, methanol, and ethyl acetate extracts were assayed. The extracts were also studied in an ex vivo experimental model of colon inflammation, and in this context the gene expression of cyclooxygenase-2 (COX-2) and tumor necrosis factor α (TNFα) were assayed. Additionally, in colon cancer HCT116 cells, the gene expression of transient receptor potential cation channel subfamily M (melastatin) member 8 (TRPM8), possibly involved in colon carcinogenesis, was conducted as well. The extracts showed a different qualitative and quantitative content of phytochemicals, with water and methanol extracts being richer in total phenols and flavonoids, among which are flavonol glycosides and hydroxycinnamic acids. This could explain, at least in part, the higher antioxidant effects shown by methanol and water extracts, compared with ethyl acetate extract. By contrast, the ethyl acetate was more effective as cytotoxic agent against colon cancer cells, and this could be related, albeit partially, to the content of thymol and to its putative ability to downregulate TRPM8 gene expression. Additionally, the ethyl acetate extract was effective in inhibiting the gene expression of COX-2 and TNFα in isolated colon tissue exposed to LPS. Overall, the present results support future studies for investigating protective effects against gut inflammatory diseases.
Collapse
Affiliation(s)
- Annalisa Chiavaroli
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Maria Loreta Libero
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | | | - Alessandra Acquaviva
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Nilofar
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Lucia Recinella
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Sheila Leone
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Luigi Brunetti
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Donatella Cicia
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Angelo Antonio Izzo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Giustino Orlando
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Gokhan Zengin
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, 34537 Istanbul, Turkey
| | - Ugur Cakilcioğlu
- Pertek Sakine Genç Vocational School, Munzur University, 62500 Pertek, Turkey
| | - Muzaffer Mukemre
- Department of Plant and Animal Production, Yuksekova Vocational School, Hakkari University, 30100 Hakkari, Turkey
| | - Omer Elkiran
- Department of Environmental Health, Vocational School of Health Services, Sinop University, 57000 Sinop, Turkey
| | - Luigi Menghini
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Claudio Ferrante
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
8
|
Ibrahium SM, Aboelhadid SM, Wahba AA, Farghali AA, Miller RJ, Abdel-Baki AAS, Al-Quraishy S. Preparation of geranium oil formulations effective for control of phenotypic resistant cattle tick Rhipicephalus annulatus. Sci Rep 2022; 12:11693. [PMID: 35803943 PMCID: PMC9270397 DOI: 10.1038/s41598-022-14661-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 06/10/2022] [Indexed: 11/09/2022] Open
Abstract
The aim of the present study was to evaluate in vitro and in vivo the acaricidal activity of two forms of geranium (Pelargonium graveolens) (PG). These two forms were the P. graveolens essential oil nanoemulsion (PGN), and the PG in combination with the sesame oil (SO), PGSO). These forms were first evaluated in vitro for their adulticidal, ovicidal, and larvicidal activities against the different stages of acaricide-resistant Rhipicephalus annulatus (Say). Geranium nanoemulsion was prepared and then characterized by UV-Vis spectrophotometer, and zeta droplet size measurement. The results revealed that LC50 of the PG against the adult ticks was attained at concentration of 7.53% while it was decreased to 1.91% and 5.60% for PGSO and PGN, respectively. Also, the LC50 of PGN and PGSO were reached at concentrations of 1.688 and 0.944%, respectively against the larvae while the LC50 of the PG was reached at concentration of 3.435% for. The combination of PGN with PG exhibited non-significant ovicidal effect meanwhile PGSO showed significant ovicidal effect even at the low concentration (2.5%). The PGSO and PGN formulations were applied in a field trial to control the ticks of the naturally infested cattle. PGSO and PGN significantly reduced the tick burden to 74.83% and 87.97%, respectively at 3 weeks post-application with performance better than the deltamethrin (29.88%). In conclusion, the two PG forms can be used as suitable alternatives to control R. annulatus tick and they need further modifications for effective field application.
Collapse
Affiliation(s)
- Samar M Ibrahium
- Department of Parasitology, Animal Health Research Institute, Fayum Branch, Fayum, Egypt.
| | - Shawky M Aboelhadid
- Department of Parasitology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 52611, Egypt
| | - Ahmed A Wahba
- Department of Parasitology, Animal Health Research Institute, Dokki, Egypt
| | - Ahmed A Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Robert J Miller
- Office of National Programs, United States Department of Agriculture Agricultural Research Service, Washington, USA
| | | | - Saleh Al-Quraishy
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Potentiation of anti-Helicobacter pylori activity of clarithromycin by Pelargonium graveolens oil. Arab J Gastroenterol 2021; 22:224-228. [PMID: 34531132 DOI: 10.1016/j.ajg.2021.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 05/08/2021] [Accepted: 05/31/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND STUDY AIM Peptic ulcer is one of the most serious diseases in Egypt, affecting more than one-third of the population. Helicobacter pylori is the main organism responsible for peptic ulcer formation. These ulcers can lead to chronic active gastritis and lymphoma. As such, in this study, we evaluate the efficacy of Pelargonium graveolens oil for the treatment of H pylori, as well as its synergistic effects with the antibiotic clarithromycin (CLR). PATIENTS AND METHODS We evaluated the chemical composition of P. graveolens volatile oil as well as its anti-Helicobacter activities. We assessed the volatile oil components using gas chromatography coupled with mass spectrometry. We determined anti-H. pylori potential using a micro-well dilution method. RESULTS We identified 92 compounds from the oil. Citronellol, geraniol, citronellyl formate, and isolongifolan-7-α-ol were the predominant components (15.64%, 11.31%, 10.19%, and 7.84%, respectively). The oil exhibited a good activity against H. pylori at an minimal inhibitory concentration of 15.63 µg/ml. Once we combined the volatile oil with CLR, a significant synergistic effect appeared at an fractional inhibitory concentration index of 0.38 µg/ml. CONCLUSION The in-vitro interaction between the P. graveolens oil and CLR improved the antimicrobial activity of the latter, suggesting that further studies are needed to determine formulations for potential antimicrobial applications in food and pharmaceuticals.
Collapse
|
10
|
Fekri N, El Amir D, Owis A, AbouZid S. Studies on essential oil from rose-scented geranium, Pelargonium graveolens L'Hérit. (Geraniaceae). Nat Prod Res 2019; 35:2593-2597. [PMID: 31679416 DOI: 10.1080/14786419.2019.1682581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Rose-scented geranium, Pelargonium graveolens L'Hérit. (Geraniaceae), is an economically important plant. GC-MS analysis of the essential oil, prepared by hydro-distillation from this plant species, showed the presence of iso-menthone (15.71%), epi-α-cadinol (15.49%), iso-menthol (6.46%), geranyl formate (6.22%), geraniol (6.16%) and citronellol (5.53%). The composition of the absolute prepared by solvent extraction was compared to that of the essential oil. Change in citronellol to geraniol ratio in the absolute was monitored during leaf development. Estimation of the ratio of the two compounds was carried out using 1H NMR spectroscopy. Geraniol content was highest in young leaves and citronellol content increased with increase in leaf age. Meta-analysis of the essential oil constituents reported from different countries was carried out. Menthone and isomenthone as well as citronellol and geraniol were negatively correlated. A significantly positive correlation was found between geraniol and linalool.
Collapse
Affiliation(s)
- Nermen Fekri
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.,Fayoum University Hospital, Fayoum, Egypt
| | - Dalia El Amir
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Asmaa Owis
- Fayoum University Hospital, Fayoum, Egypt
| | - Sameh AbouZid
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.,Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| |
Collapse
|
11
|
Tlili H, Marino A, Ginestra G, Cacciola F, Mondello L, Miceli N, Taviano MF, Najjaa H, Nostro A. Polyphenolic profile, antibacterial activity and brine shrimp toxicity of leaf extracts from six Tunisian spontaneous species. Nat Prod Res 2019; 35:1057-1063. [PMID: 31163999 DOI: 10.1080/14786419.2019.1616725] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The aim of this study was to investigate the polyphenolic profile and biological properties of leaves acetonic extracts from six Tunisian spontaneous plants of Marrubium vulgare L., Rhus tripartita (Ucria) D.C., Hernaria fontanesii J. Gay subsp. fontanesii, Ziziphus lotus L., Plantago ovata Forsk., Thymelaea hirsuta (L.) Endl. Bioassay-guided and HPLC-PDA-ESI-MS procedures demonstrated that R. tripartita contained the highest amount of phenolic compounds (1475.1 µg/g), followed by Z. lotus (1087.8 µg/g) and P. ovata (1027.6 µg/g). Interestingly, in R. tripartita myricetin-3-O-galactoside turned out to be the most abundant one. The plant extracts showed antimicrobial efficacy against Listeria monocytogenes, Staphylococcus aureus and S. epidermidis including methicillin resistant strains; no activity was detected against Gram-negative bacteria. R. tripartita revealed the best MIC and MBC values and caused significant decrease of S. aureus biofilm. Both R. tripartita and Z. lotus did not display any toxicity against Artemia salina Leach (LC50 > 1000 μg/mL).
Collapse
Affiliation(s)
- Hajer Tlili
- Laboratory of Pastoral Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms, Medenine, Tunisia
| | - Andreana Marino
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Polo Annunziata, University of Messina, Messina, Italy
| | - Giovanna Ginestra
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Polo Annunziata, University of Messina, Messina, Italy
| | - Francesco Cacciola
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali, University of Messina, Messina, Italy
| | - Luigi Mondello
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Polo Annunziata, University of Messina, Messina, Italy.,Unit of Food Science and Nutrition, University Campus Bio-Medico of Rome, Rome, Italy.,Chromaleont s.r.l., c/o, Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Polo Annunziata, University of Messina, Messina, Italy
| | - Natalizia Miceli
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Polo Annunziata, University of Messina, Messina, Italy
| | - Maria Fernanda Taviano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Polo Annunziata, University of Messina, Messina, Italy
| | - Hanen Najjaa
- Laboratory of Pastoral Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms, Medenine, Tunisia
| | - Antonia Nostro
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Polo Annunziata, University of Messina, Messina, Italy
| |
Collapse
|