1
|
Felisberto JS, Machado DB, Assunção JAS, Massau SAS, de Queiroz GA, Guimarães EF, Ramos YJ, Moreira DDL. Spatio-Temporal Variations of Volatile Metabolites as an Eco-Physiological Response of a Native Species in the Tropical Forest. PLANTS (BASEL, SWITZERLAND) 2024; 13:2599. [PMID: 39339574 PMCID: PMC11435382 DOI: 10.3390/plants13182599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
This study evaluates the essential oil (EO) composition of Piper rivinoides Kunth, a shrub native to the Brazilian tropical rainforest, across different plant parts and developmental phases. The aim was to explore the chemical diversity of EO and its reflection in the plant's ecological interactions and adaptations. Plant organs (roots, stems, branches, and leaves) at different developmental phases were subjected to hydrodistillation followed by chemical analysis using Gas Chromatography-Mass Spectrometry (GC-MS) and Gas Chromatography-Flame Ionization Detector (GC-FID). The results revealed a relevant variation in EO yield and composition among different plant parts and developmental phases. Leaves showed the highest yield and chemical diversity, with α-pinene and β-pinene as major constituents, while roots and stems were characterized by a predominance of arylpropanoids, particularly apiol. The chemical diversity in leaves increased with plant maturity, indicating a dynamic adaptation to environmental interactions. The study underscores the importance of considering the ontogeny of plant parts in understanding the ecological roles and potential applications of P. rivinoides in medicine and agriculture. The findings contribute to the overall knowledge of Piperaceae chemodiversity and ecological adaptations, offering insights into the plant's interaction with its environment and its potential uses based on chemical composition.
Collapse
Affiliation(s)
- Jéssica Sales Felisberto
- Postgraduate Program in Plant Biology, State University of Rio de Janeiro, Maracanã, Rio de Janeiro 20550-013, RJ, Brazil; (J.S.F.); (D.B.M.); or (Y.J.R.)
- Natural Products and Biochemistry Laboratory, Rio de Janeiro Botanical Garden Research Institute, Jardim Botânico, Rio de Janeiro 22460-030, RJ, Brazil; (S.A.S.M.); (E.F.G.)
- Earth’s Pharmacy Laboratory, Federal University of Bahia, Ondina, Salvador 40170-215, BA, Brazil
| | - Daniel B. Machado
- Postgraduate Program in Plant Biology, State University of Rio de Janeiro, Maracanã, Rio de Janeiro 20550-013, RJ, Brazil; (J.S.F.); (D.B.M.); or (Y.J.R.)
- Natural Products and Biochemistry Laboratory, Rio de Janeiro Botanical Garden Research Institute, Jardim Botânico, Rio de Janeiro 22460-030, RJ, Brazil; (S.A.S.M.); (E.F.G.)
| | - Jeferson A. S. Assunção
- Postgraduate Program in Translational Research in Drugs and Medicines, Pharmaceutical Technology Institute (Farmanguinhos), Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil;
| | - Samik A. S. Massau
- Natural Products and Biochemistry Laboratory, Rio de Janeiro Botanical Garden Research Institute, Jardim Botânico, Rio de Janeiro 22460-030, RJ, Brazil; (S.A.S.M.); (E.F.G.)
| | - George A. de Queiroz
- Department of Pharmacy, State University of Rio de Janeiro, Rio de Janeiro 23070-200, RJ, Brazil;
| | - Elsie F. Guimarães
- Natural Products and Biochemistry Laboratory, Rio de Janeiro Botanical Garden Research Institute, Jardim Botânico, Rio de Janeiro 22460-030, RJ, Brazil; (S.A.S.M.); (E.F.G.)
| | - Ygor J. Ramos
- Postgraduate Program in Plant Biology, State University of Rio de Janeiro, Maracanã, Rio de Janeiro 20550-013, RJ, Brazil; (J.S.F.); (D.B.M.); or (Y.J.R.)
- Earth’s Pharmacy Laboratory, Federal University of Bahia, Ondina, Salvador 40170-215, BA, Brazil
| | - Davyson de Lima Moreira
- Postgraduate Program in Plant Biology, State University of Rio de Janeiro, Maracanã, Rio de Janeiro 20550-013, RJ, Brazil; (J.S.F.); (D.B.M.); or (Y.J.R.)
- Natural Products and Biochemistry Laboratory, Rio de Janeiro Botanical Garden Research Institute, Jardim Botânico, Rio de Janeiro 22460-030, RJ, Brazil; (S.A.S.M.); (E.F.G.)
- Postgraduate Program in Translational Research in Drugs and Medicines, Pharmaceutical Technology Institute (Farmanguinhos), Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil;
| |
Collapse
|
2
|
Xie Q, Liu Z. Chemometrics of the composition and antioxidant capacity of essential oils obtained from six Cupressaceae taxa. Sci Rep 2024; 14:18612. [PMID: 39127791 PMCID: PMC11316816 DOI: 10.1038/s41598-024-69600-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024] Open
Abstract
Essential oils (EOs) are complex and susceptible to environmental conditions, they have a wide range of biological activities and are often used to differentiate between similar species. In this study, gas chromatography-mass spectrometry (GC-MS) coupled with chemometric analysis was applied to systematically analyse and evaluate EOs constituents and antioxidant activity of six Chinese Cupressaceae taxa (Platycladus orientalis Franco, P. orientalis Franco 'Sieboldii', P. orientalis Franco 'Aurea', Juniperus chinensis Roxb., J. chinensis Roxb. 'Kaizuca', and J. sabina L.) under identical conditions. The antioxidant activity of the EOs was evaluated using 2,2 -diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), and ferric reducing power (FRAP), and the total phenolic content (TPC) of the EOs was determined by Folin-Ciocalteau reagent. In total, seventy individual constituents were identified with the main components being α-pinene, sabinene, D-limonene, bornyl acetate, δ-3-carene and β-myrcene. Principal component analysis (PCA) and hierarchal cluster analysis (HCA) successfully discriminated the six taxa into three chemotypes and the unique chemotype revealed that J. chinensis 'Kaizuca' may be a species rather than a cultivar of J. chinensis. The results of OPLS-DA analysis showed that the three compounds screened, namely, α-pinene, sabinene, and δ-3-carene, can completely distinguish Platycladus spp. from Juniperus spp. The DPPH assay results ranged from 576.14 (J. chinensis 'Kaizuca') to 1146.12 (J. sabina) μmol eq Trolox/mL EO, while the ABTS values ranged from 1579.62 (P. orientalis 'Aurea') to 5071.82 (J. sabina) μmol eq Trolox/mL. In the FRAP assay, the values ranged from 1086.50 (J. chinensis 'Kaizuca') to 1191.18 (J. sabina) μmol eq Trolox/ml and the TPC of the EOs studied ranged from 15.17 (J. chinensis 'Kaizuca') to 39.37 (J. sabina) mg GAE/mL EO. The results consistently showed that J. sabina possessed the strongest antioxidant activity and can be preferentially used as a rich source of potentially natural antioxidants.
Collapse
Affiliation(s)
- Qing Xie
- College of Forestry, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Zhihong Liu
- College of Forestry, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
3
|
Hu H, Li D, Bai R, Zhang W, Luo H, Yu E. Chemodiversity and Bioactivity of the Essential Oils of Juniperus and Implication for Taxonomy. Int J Mol Sci 2023; 24:15203. [PMID: 37894884 PMCID: PMC10607841 DOI: 10.3390/ijms242015203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The essential oils of Juniperus are highly beneficial medicinally. The present study aimed to assess the chemodiversity and bioactivity of Juniperus formosana, Juniperus przewalskii, Juniperus convallium, Juniperus tibetica, Juniperus komarovii, and Juniperus sabina essential oils from the Qinghai-Tibet Plateau. The results revealed 92 components in six essential oils: α-pinene (2.71-17.31%), sabinene (4.91-19.83%), and sylvestrene (1.84-8.58%) were the main components. Twelve components were firstly reported in Juniperus oils, indicating that the geographical location and climatic conditions of the Qinghai-Tibet Plateau produced the unique characteristics of Juniperus essential oils. The chemodiversity of Juniperus essential oils varied greatly, with J. sabina having the most recognized components (64) and the highest chemodiversity (Shannon-Wiener index of 3.07, Simpson's diversity index of 0.91, and Pielou evenness of 0.74). According to the chemodiversity of essential oils, the six plants were decided into the α-pinene chemotype (J. formosana), hedycaryol chemotype (J. przewalskii, J. komarovii, J. convallium, J. tibetica), and sabinene chemotype (J. sabina). PCA, HCA and OPLS-DA showed that J. formosana and J. sabina were distantly related to other plants, which provides a chemical basis for the classification of Juniperus plants. Furthermore, bioactivity tests exhibited certain antioxidant and antibacterial effects in six Juniperus oils. And the bioactivities of J. convallium, J. tibetica, and J. komarovvii were measured for the first time, broadening the range of applications of Juniperus. Correlation analysis of components and bioactivities showed that δ-amorphene, β-udesmol, α-muurolol, and 2-nonanone performed well in the determination of antioxidant activity, and α-pinene, camphene, β-myrcene, as well as (E)-thujone, had strong inhibitory effects on pathogenic bacteria, providing a theoretical basis for further research on these components.
Collapse
Affiliation(s)
- Huizhong Hu
- College of Forestry, Northwest A & F University, Yangling 712100, China; (H.H.); (R.B.); (W.Z.); (H.L.); (E.Y.)
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling 712100, China
| | - Dengwu Li
- College of Forestry, Northwest A & F University, Yangling 712100, China; (H.H.); (R.B.); (W.Z.); (H.L.); (E.Y.)
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling 712100, China
| | - Ruxue Bai
- College of Forestry, Northwest A & F University, Yangling 712100, China; (H.H.); (R.B.); (W.Z.); (H.L.); (E.Y.)
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling 712100, China
| | - Weiping Zhang
- College of Forestry, Northwest A & F University, Yangling 712100, China; (H.H.); (R.B.); (W.Z.); (H.L.); (E.Y.)
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling 712100, China
| | - Hong Luo
- College of Forestry, Northwest A & F University, Yangling 712100, China; (H.H.); (R.B.); (W.Z.); (H.L.); (E.Y.)
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling 712100, China
| | - Enping Yu
- College of Forestry, Northwest A & F University, Yangling 712100, China; (H.H.); (R.B.); (W.Z.); (H.L.); (E.Y.)
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Yangling 712100, China
| |
Collapse
|
4
|
Tian P, Zhang Y, Wang Z, Liu S, Chen Q, Hu H, Li D. Sex-Related Differences on Chemical Composition, Anatomy, Histochemistry, and Biological Activities of Juniperus rigida. Chem Biodivers 2022; 19:e202200404. [PMID: 36026582 DOI: 10.1002/cbdv.202200404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/10/2022] [Indexed: 11/09/2022]
Abstract
Sex-related differences on phenolic profiles, chemical composition of essential oils, anatomy, histochemistry and biological activities (antioxidant and antibacterial activities) of Juniperus rigida needles collected from Yijun and Fugu region were first studied. In two regions, female and male had similar contents of total phenolic and total flavonoid. 10 phenolic compounds were analyzed by RP-HPLC, amentoflavone content was significantly higher in female than male in Yijun, and chlorogenic acid content was significantly higher in female than male in Fugu. 30 compounds (over 0.5 %) were detected in the essential oils, and the total contents of female were lower than male in Yijun. This difference mainly comes from Germacrene D, which was about twice as high in male as in female. Male needles had significantly larger mechanical tissue and phloem in Yijun. Histochemical analysis indicated that the phenols were stored in epidermal cells, sponge tissue, endodermis cells, edge of resin duct, stomatal bands, and the flavonoids were stored in epidermal cells, endodermis cells, edge of resin duct, stomatal bands. No sex-related differences were found in histochemical analysis, antioxidant activities (ABTS, FRAP) and antibacterial activities (9 strains). This preliminary study provided a reference for production practice and theoretical research of J. rigida.
Collapse
Affiliation(s)
- Peilin Tian
- College of Forestry, Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yujia Zhang
- College of Forestry, Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Ziyi Wang
- College of Forestry, Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Shi Liu
- College of Forestry, Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Qian Chen
- College of Forestry, Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Huizhong Hu
- College of Forestry, Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Dengwu Li
- College of Forestry, Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, Northwest A&F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
5
|
Li Y, Cao X, Sun J, Zhang W, Zhang J, Ding Y, Liu Y. Characterization of chemical compositions by a GC–MS/MS approach and evaluation of antioxidant activities of essential oils from Cinnamomum reticulatum Hay, Leptospermum petersonii Bailey, and Juniperus formosana Hayata. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|