1
|
da Costa CS, Marques EM, do Nascimento JR, Lima VAS, Santos-Oliveira R, Figueredo AS, de Jesus CM, de Souza Nunes GC, Brandão CM, de Jesus ET, Sa MC, Tanaka AA, Braga G, Santos ACF, de Lima RB, Silva LA, Alencar LMR, da Rocha CQ, Gonçalves RS. Design of Liquid Formulation Based on F127-Loaded Natural Dimeric Flavonoids as a New Perspective Treatment for Leishmaniasis. Pharmaceutics 2024; 16:252. [PMID: 38399306 PMCID: PMC10891960 DOI: 10.3390/pharmaceutics16020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/04/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Infectious and Parasitic Diseases (IPD) remain a challenge for medicine due to several interconnected reasons, such as antimicrobial resistance (AMR). American tegumentary leishmaniasis (ATL) is an overlooked IPD causing persistent skin ulcers that are challenging to heal, resulting in disfiguring scars. Moreover, it has the potential to extend from the skin to the mucous membranes of the nose, mouth, and throat in both humans and various animals. Given the limited effectiveness and AMR of current drugs, the exploration of new substances has emerged as a promising alternative for ATL treatment. Arrabidaea brachypoda (DC). Bureau is a native Brazilian plant rich in dimeric flavonoids, including Brachydin (BRA), which displays antimicrobial activity, but still little has been explored regarding the development of therapeutic formulations. In this work, we present the design of a low-cost liquid formulation based on the use of Pluronic F127 for encapsulation of high BRA concentration (LF-B500). The characterization techniques revealed that BRA-loaded F127 micelles are well-stabilized in an unusual worm-like form. The in vitro cytotoxicity assay demonstrated that LF-B500 was non-toxic to macrophages but efficient in the inactivation of forms of Leishmania amazonensis promastigotes with IC50 of 16.06 µg/mL. The results demonstrated that LF-B500 opened a new perspective on the use of liquid formulation-based natural products for ATL treatment.
Collapse
Affiliation(s)
- Camila Silva da Costa
- Laboratory of Chemistry of Natural Products, Department of Chemistry, Federal University of Maranhão, São Luís 65080-805, Brazil; (C.S.d.C.); (E.M.M.); (J.R.d.N.); (V.A.S.L.); (C.Q.d.R.)
| | - Estela Mesquita Marques
- Laboratory of Chemistry of Natural Products, Department of Chemistry, Federal University of Maranhão, São Luís 65080-805, Brazil; (C.S.d.C.); (E.M.M.); (J.R.d.N.); (V.A.S.L.); (C.Q.d.R.)
| | - Jessyane Rodrigues do Nascimento
- Laboratory of Chemistry of Natural Products, Department of Chemistry, Federal University of Maranhão, São Luís 65080-805, Brazil; (C.S.d.C.); (E.M.M.); (J.R.d.N.); (V.A.S.L.); (C.Q.d.R.)
- Postgraduate Program in Chemistry, Institute of Chemistry, UNESP-Estadual University Paulista Júlio de Mesquita Filho, Araraquara 14800-060, Brazil
| | - Victor Antônio Silva Lima
- Laboratory of Chemistry of Natural Products, Department of Chemistry, Federal University of Maranhão, São Luís 65080-805, Brazil; (C.S.d.C.); (E.M.M.); (J.R.d.N.); (V.A.S.L.); (C.Q.d.R.)
| | - Ralph Santos-Oliveira
- Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941-906, Brazil;
- Laboratory of Nanoradiopharmacy, Rio de Janeiro State University, Rio de Janeiro 23070-200, Brazil
| | - Aline Santana Figueredo
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil; (A.S.F.); (C.M.d.J.); (L.A.S.)
| | - Caroline Martins de Jesus
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil; (A.S.F.); (C.M.d.J.); (L.A.S.)
| | | | - Clenilma Marques Brandão
- Department of Chemistry, Federal Institute of Maranhão, São Luis 65075-441, Brazil; (C.M.B.); (E.T.d.J.); (M.C.S.)
| | - Edson Tobias de Jesus
- Department of Chemistry, Federal Institute of Maranhão, São Luis 65075-441, Brazil; (C.M.B.); (E.T.d.J.); (M.C.S.)
| | - Mayara Coelho Sa
- Department of Chemistry, Federal Institute of Maranhão, São Luis 65075-441, Brazil; (C.M.B.); (E.T.d.J.); (M.C.S.)
| | - Auro Atsushi Tanaka
- Department of Chemistry, Federal University of Maranhão, São Luís 65080-805, Brazil; (A.A.T.); (G.B.); (A.C.F.S.); (R.B.d.L.)
| | - Gustavo Braga
- Department of Chemistry, Federal University of Maranhão, São Luís 65080-805, Brazil; (A.A.T.); (G.B.); (A.C.F.S.); (R.B.d.L.)
| | - Ana Caroline Ferreira Santos
- Department of Chemistry, Federal University of Maranhão, São Luís 65080-805, Brazil; (A.A.T.); (G.B.); (A.C.F.S.); (R.B.d.L.)
| | - Roberto Batista de Lima
- Department of Chemistry, Federal University of Maranhão, São Luís 65080-805, Brazil; (A.A.T.); (G.B.); (A.C.F.S.); (R.B.d.L.)
| | - Lucilene Amorim Silva
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís 65080-805, Brazil; (A.S.F.); (C.M.d.J.); (L.A.S.)
| | | | - Cláudia Quintino da Rocha
- Laboratory of Chemistry of Natural Products, Department of Chemistry, Federal University of Maranhão, São Luís 65080-805, Brazil; (C.S.d.C.); (E.M.M.); (J.R.d.N.); (V.A.S.L.); (C.Q.d.R.)
| | - Renato Sonchini Gonçalves
- Laboratory of Chemistry of Natural Products, Department of Chemistry, Federal University of Maranhão, São Luís 65080-805, Brazil; (C.S.d.C.); (E.M.M.); (J.R.d.N.); (V.A.S.L.); (C.Q.d.R.)
| |
Collapse
|
2
|
Wu JJ, Zhang J, Xia CY, Ding K, Li XX, Pan XG, Xu JK, He J, Zhang WK. Hypericin: A natural anthraquinone as promising therapeutic agent. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154654. [PMID: 36689857 DOI: 10.1016/j.phymed.2023.154654] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Hypericin is a prominent secondary metabolite mainly existing in genus Hypericum. It has become a research focus for a quiet long time owing to its extensively pharmacological activities especially the anti-cancer, anti-bacterial, anti-viral and neuroprotective effects. This review concentrated on summarizing and analyzing the existing studies of hypericin in a comprehensive perspective. METHODS The literature with desired information about hypericin published after 2010 was gained from electronic databases including PubMed, SciFinder, Science Direct, Web of Science, China National Knowledge Infrastructure databases and Wan Fang DATA. RESULTS According to extensive preclinical and clinical studies conducted on the hypericin, an organized and comprehensive summary of the natural and artificial sources, strategies for improving the bioactivities, pharmacological activities, drug combination of hypericin was presented to explore the future therapeutic potential of this active compound. CONCLUSIONS Overall, this review offered a theoretical guidance for the follow-up research of hypericin. However, the pharmacological mechanisms, pharmacokinetics and structure activity relationship of hypericin should be further studied in future research.
Collapse
Affiliation(s)
- Jing-Jing Wu
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Jia Zhang
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cong-Yuan Xia
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Kang Ding
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xin-Xin Li
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xue-Ge Pan
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jie-Kun Xu
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jun He
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Wei-Ku Zhang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
3
|
Pereira LS, Camacho SA, Almeida AM, Gonçalves RS, Caetano W, DeWolf C, Aoki PH. Mechanisms of hypericin incorporation to explain the photooxidation outcomes in phospholipid biomembrane models. Chem Phys Lipids 2022; 244:105181. [DOI: 10.1016/j.chemphyslip.2022.105181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/14/2022] [Accepted: 02/10/2022] [Indexed: 11/03/2022]
|