1
|
Rehman R, Hussain M, Muzaffar R, Bano A, Ahmed M, Sadia H. Eucalyptus Essential Oil Based Nanoemulsions: Preparation and Biological Activities. Chem Biodivers 2024; 21:e202400406. [PMID: 38687088 DOI: 10.1002/cbdv.202400406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
Eucalyptus essential oil has remarkable industrial importance and biological properties due to its effectiveness against various diseases, reported throughout human history. Despite the extraordinary bioactivities of essential oil, its applications are limited due to volatility, insolubility in water, and less stability. Formulation of nanoemulsion is the best way to enhance the bio-efficacy of this essential oil and eliminate the factors responsible for limited application. This review article compiles the information regarding formulation of Eucalyptus essential oil-based nanoemulsion and their several biological activities and medicinal properties including antibacterial, antifungal, larvicidal, insecticidal, and cytotoxic activities etc. The bio-efficacy of essential oil-based nanoemulsion has also been found to be enhanced as compared utilization of essential oil alone. This review can be beneficial for researchers working on medicinal plant-based natural products, specifically containing Eucalyptus essential oil, to explore new research horizons in this emerging field.
Collapse
Affiliation(s)
- Rafia Rehman
- Section of Phytochemistry and Natural Products, Department of Biological Sciences, National University of Medical sciences, Rawalpindi, 46000, Punjab, Pakistan
- Department of Chemistry, University of Okara, Okara, 56300, Pakistan
| | - Muzammal Hussain
- Department of Chemistry, University of Okara, Okara, 56300, Pakistan
| | - Rabeea Muzaffar
- Department of Biochemistry, University of Agriculture, Faisalabad, Faisalabad, 38000
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Punjab, Pakistan
| | - Afsar Bano
- Department of Physics, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, LUMS, 54792, Lahore, Pakistan
| | - Marghoob Ahmed
- School of Chemical and Materials Engineering, National University of Science and Technology, Islamabad, 44000, Islamabad, Pakistan
| | - Haleema Sadia
- Department of Chemistry, University of Okara, Okara, 56300, Pakistan
| |
Collapse
|
2
|
Ashaq B, Rasool K, Habib S, Bashir I, Nisar N, Mustafa S, Ayaz Q, Nayik GA, Uddin J, Ramniwas S, Mugabi R, Wani SM. Insights into chemistry, extraction and industrial application of lemon grass essential oil -A review of recent advances. Food Chem X 2024; 22:101521. [PMID: 38952570 PMCID: PMC11215000 DOI: 10.1016/j.fochx.2024.101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 07/03/2024] Open
Abstract
Lemongrass essential oil (LEO), extracted from high-oil lemongrass, gains prominence as a versatile natural product due to growing demand for safe health solutions. LEO comprises beneficial compounds like citral, isoneral, geraniol, and citronellal, offering diverse pharmacological benefits such as antioxidant, antifungal, antibacterial, antiviral, and anticancer effects. LEO finds applications in food preservation, cosmetics, and pharmaceuticals, enhancing profitability across these sectors. The review focuses on the extraction of LEO, emphasizing the need for cost-effective methods. Ultrasound and supercritical fluid extraction are effective in reducing extraction time, increasing yields, and enhancing oil quality. LEO shows promise as a valuable natural resource across industries, with applications in packaging, coating, and film development. LEO's ability to extend the shelf life of food items and impart natural flavors positions it as a valuable asset. Overall, the review emphasizes LEO's therapeutic, antimicrobial, and antioxidant properties, strengthening its potential in the food, pharmaceutical, and cosmetic sectors.
Collapse
Affiliation(s)
- Barjees Ashaq
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190025, J&K, India
| | - Khansa Rasool
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190025, J&K, India
| | - Samira Habib
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190025, J&K, India
| | - Iqra Bashir
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190025, J&K, India
| | - Naseh Nisar
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190025, J&K, India
| | - Sehrish Mustafa
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190025, J&K, India
| | - Qudsiya Ayaz
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190025, J&K, India
| | - Gulzar Ahmad Nayik
- Department of Food Science & Technology, Govt. Degree College, Shopian 192303, J&K, India
| | - Jalal Uddin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Asir 61421, Saudi Arabia
| | - Seema Ramniwas
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Robert Mugabi
- Department of Food Technology and Nutrition, Makerere University, Kampala, Uganda
| | - Sajad Mohd Wani
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Kashmir, 190025, J&K, India
| |
Collapse
|
3
|
Gupta I, Singh R, Muthusamy S, Sharma M, Grewal K, Singh HP, Batish DR. Plant Essential Oils as Biopesticides: Applications, Mechanisms, Innovations, and Constraints. PLANTS (BASEL, SWITZERLAND) 2023; 12:2916. [PMID: 37631128 PMCID: PMC10458566 DOI: 10.3390/plants12162916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
The advent of the "Green Revolution" was a great success in significantly increasing crop productivity. However, it involved high ecological costs in terms of excessive use of synthetic agrochemicals, raising concerns about agricultural sustainability. Indiscriminate use of synthetic pesticides resulted in environmental degradation, the development of pest resistance, and possible dangers to a variety of nontarget species (including plants, animals, and humans). Thus, a sustainable approach necessitates the exploration of viable ecofriendly alternatives. Plant-based biopesticides are attracting considerable attention in this context due to their target specificity, ecofriendliness, biodegradability, and safety for humans and other life forms. Among all the relevant biopesticides, plant essential oils (PEOs) or their active components are being widely explored against weeds, pests, and microorganisms. This review aims to collate the information related to the expansion and advancement in research and technology on the applications of PEOs as biopesticides. An insight into the mechanism of action of PEO-based bioherbicides, bioinsecticides, and biofungicides is also provided. With the aid of bibliometric analysis, it was found that ~75% of the documents on PEOs having biopesticidal potential were published in the last five years, with an annual growth rate of 20.51% and a citation per document of 20.91. Research on the biopesticidal properties of PEOs is receiving adequate attention from European (Italy and Spain), Asian (China, India, Iran, and Saudi Arabia), and American (Argentina, Brazil, and the United States of America) nations. Despite the increasing biopesticidal applications of PEOs and their widespread acceptance by governments, they face many challenges due to their inherent nature (lipophilicity and high volatility), production costs, and manufacturing constraints. To overcome these limitations, the incorporation of emerging innovations like the nanoencapsulation of PEOs, bioinformatics, and RNA-Seq in biopesticide development has been proposed. With these novel technological interventions, PEO-based biopesticides have the potential to be used for sustainable pest management in the future.
Collapse
Affiliation(s)
- Ipsa Gupta
- Department of Botany, Faculty of Science, Panjab University, Chandigarh 160014, India; (I.G.); (R.S.)
| | - Rishikesh Singh
- Department of Botany, Faculty of Science, Panjab University, Chandigarh 160014, India; (I.G.); (R.S.)
| | - Suganthi Muthusamy
- Department of Biotechnology, Vels Institute of Science, Technology & Advanced Studies, Pallavaram, Chennai 600117, India;
| | - Mansi Sharma
- Department of Environment Studies, Faculty of Science, Panjab University, Chandigarh 160014, India;
| | - Kamaljit Grewal
- Department of Botany, Khalsa College for Women, Civil Lines, Ludhiana 141001, India;
| | - Harminder Pal Singh
- Department of Environment Studies, Faculty of Science, Panjab University, Chandigarh 160014, India;
| | - Daizy R. Batish
- Department of Botany, Faculty of Science, Panjab University, Chandigarh 160014, India; (I.G.); (R.S.)
| |
Collapse
|
4
|
Balasubramanian D, Girigoswami A, Girigoswami K. Antimicrobial, Pesticidal and Food Preservative Applications of Lemongrass Oil Nanoemulsion: A Mini-Review. RECENT ADVANCES IN FOOD, NUTRITION & AGRICULTURE 2022; 13:51-58. [PMID: 35638282 DOI: 10.2174/2212798412666220527154707] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Essential oils that are extracted from plants have shown beneficial effects on humans and animals, evidenced by traditional medicine. They possess many essential phytocomponents that act as antimicrobial agents, and most of them are safe for external usage. INTRODUCTION Lemongrass essential oil is extracted from the grass, such as Cymbopogon flexuosus, and is used for antimicrobial activity for a long time. The efficacy of this oil is limited due to the poor solubility and microbial penetration, easy vaporization, and lower stability. Nanoformulations and nanoencapsulations are nanotechnology fields that aim to improve the bioavailability of many natural compounds and enhance their stability. Lemongrass oil has also been nanoformulated as nanoemulsion, and various antimicrobial activities against various pathogens have been demonstrated, which are superior to free lemongrass oil. METHODOLOGY We have used the search engines PubMed and Google Scholar for the mentioned keywords and selected the recent references related to this topic. CONCLUSION In this review, we have discussed various antimicrobial properties of lemongrass essential oil nanoemulsion and its application, such as antibacterial, antifungal, pesticidal, food preservative, and antibiofilm activity.
Collapse
Affiliation(s)
- Deepika Balasubramanian
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, 603103, Tamilnadu, India
| | - Agnishwar Girigoswami
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, 603103, Tamilnadu, India
| | - Koyeli Girigoswami
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chettinad Health City, Kelambakkam, 603103, Tamilnadu, India
| |
Collapse
|
5
|
Li L, He M, Fang C, Zhang Y, Wang Y, Song X, Zou Y, Jia R, Liang X, Yin L, Lv C, Wan H, Zhao X, Yin Z. Preparation, characterization, ex vivo transdermal properties and skin irritation evaluation of 1,8-cineole nanoemulsion gel. Int J Pharm 2022; 624:121982. [DOI: 10.1016/j.ijpharm.2022.121982] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 10/17/2022]
|
6
|
Faheem F, Liu ZW, Rabail R, Haq IU, Gul M, Bryła M, Roszko M, Kieliszek M, Din A, Aadil RM. Uncovering the Industrial Potentials of Lemongrass Essential Oil as a Food Preservative: A Review. Antioxidants (Basel) 2022; 11:720. [PMID: 35453405 PMCID: PMC9031912 DOI: 10.3390/antiox11040720] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 02/01/2023] Open
Abstract
The food industry is growing vastly, with an increasing number of food products and the demand of consumers to have safe and pathogen-free food with an extended shelf life for consumption. It is critical to have food safe from pathogenic bacteria, fungi, and unpleasant odors or tastes so that the food may not cause any health risks to consumers. Currently, the direction of food industry has been shifting from synthetically produced preservatives to natural preservatives to lower the unnecessary chemical burden on health. Many new technologies are working on natural prevention tools against food degradation. Lemongrass is one such natural preservative that possesses significant antimicrobial and antioxidant activity. The essential oil of lemongrass contains a series of terpenes that are responsible for these activities. These properties make lemongrass acceptable in the food industry and may fulfill consumer demands. This article provides detailed information about the role of lemongrass and its essential oil in food preservation. The outcomes of the research on lemongrass offer room for its new technological applications in food preservation.
Collapse
Affiliation(s)
- Fatima Faheem
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (F.F.); (R.R.); (M.G.); (A.D.)
| | - Zhi Wei Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China;
| | - Roshina Rabail
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (F.F.); (R.R.); (M.G.); (A.D.)
| | - Iahtisham-Ul Haq
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Lahore 54600, Pakistan;
| | - Maryam Gul
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (F.F.); (R.R.); (M.G.); (A.D.)
| | - Marcin Bryła
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (M.R.)
| | - Marek Roszko
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (M.R.)
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland
| | - Ahmad Din
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (F.F.); (R.R.); (M.G.); (A.D.)
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (F.F.); (R.R.); (M.G.); (A.D.)
| |
Collapse
|