1
|
Hou S, Ma D, Wu S, Hui Q, Hao Z. Morinda citrifolia L.: A Comprehensive Review on Phytochemistry, Pharmacological Effects, and Antioxidant Potential. Antioxidants (Basel) 2025; 14:295. [PMID: 40227265 PMCID: PMC11939675 DOI: 10.3390/antiox14030295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 04/15/2025] Open
Abstract
Morinda citrifolia L. (M. citrifolia), commonly referred to as noni, a Polynesian medicinal plant with over 2000 years of traditional use, has garnered global interest for its rich repertoire of antioxidant phytochemicals, including flavonoids (kaempferol, rutin), iridoids (aucubin, asperulosidic acid, deacetylasperulosidic acid, asperuloside), polysaccharides (nonioside A), and coumarins (scopoletin). This comprehensive review synthesizes recent advances (2018-2023) on noni's bioactive constituents, pharmacological properties, and molecular mechanisms, with a focus on its antioxidant potential. Systematic analyses reveal that noni-derived compounds exhibit potent free radical scavenging capacity (e.g., 2,2-Diphenyl-1-picrylhydrazyl/2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonicacid) (DPPH/ABTS) inhibition), upregulate endogenous antioxidant enzymes (Superoxide Dismutase (SOD), Catalase (CAT), Glutathione Peroxidase (GPx)), and modulate key pathways such as Nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1 (Nrf2/Keap1) and Nuclear Factor kappa-B (NF-κB). Notably, polysaccharides and iridoids demonstrate dual antioxidant and anti-inflammatory effects via gut microbiota regulation. This highlights the plant's potential for innovation in the medical and pharmaceutical fields. However, it is also recognized that further research is needed to clarify its mechanisms of action and ensure its safety for widespread application. We emphasize the need for mechanistic studies to bridge traditional knowledge with modern applications, particularly in developing antioxidant-rich nutraceuticals and sustainable livestock feed additives. This review underscores noni's role as a multi-target antioxidant agent and provides a roadmap for future research to optimize its health benefits.
Collapse
Affiliation(s)
- Silu Hou
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; (S.H.); (D.M.); (S.W.); (Q.H.)
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Danyang Ma
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; (S.H.); (D.M.); (S.W.); (Q.H.)
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Shaofeng Wu
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; (S.H.); (D.M.); (S.W.); (Q.H.)
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Qiaoyue Hui
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; (S.H.); (D.M.); (S.W.); (Q.H.)
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhihui Hao
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China; (S.H.); (D.M.); (S.W.); (Q.H.)
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
2
|
Hui Z, Wen H, Zhu J, Deng H, Jiang X, Ye XY, Wang L, Xie T, Bai R. Discovery of plant-derived anti-tumor natural products: Potential leads for anti-tumor drug discovery. Bioorg Chem 2024; 142:106957. [PMID: 37939507 DOI: 10.1016/j.bioorg.2023.106957] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/14/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Natural products represent a paramount source of novel drugs. Numerous plant-derived natural products have demonstrated potent anti-tumor properties, thereby garnering considerable interest in their potential as anti-tumor drugs. This review compiles an overview of 242 recently discovered natural products, spanning the period from 2018 to the present. These natural products, which include 69 terpenoids, 42 alkaloids, 39 flavonoids, 21 steroids, 14 phenylpropanoids, 5 quinolines and 52 other compounds, are characterized by their respective chemical structures, anti-tumor activities, and mechanisms of action. By providing an essential reference and fresh insights, this review aims to support and inspire researchers engaged in the fields of natural products and anti-tumor drug discovery.
Collapse
Affiliation(s)
- Zi Hui
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Hao Wen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Junlong Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Haowen Deng
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Liwei Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
3
|
Ji XS, Dai DC, Wang YT, Cui JY, Li HX, Song XM, Yi JL, Zhou XM. Two new anthraquinone derivatives from Saprosma crassipes H. S. Lo. Nat Prod Res 2024; 38:91-96. [PMID: 35921492 DOI: 10.1080/14786419.2022.2106483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/18/2022] [Indexed: 10/16/2022]
Abstract
Two new anthraquinone derivatives sapranquinones A and B (1 and 2) together with two known biogenetically related anthraquinone derivatives (3 and 4) were isolated from the stems of Saprosma crassipes H. S. Lo. The structures of these compounds were elucidated using comprehensive spectroscopic methods. Compounds 1-4 were evaluated for their antibacterial activities and compounds 1 and 3 had a broad spectrum antibacterial activity against Staphylococcus albus, Escherichia coli, Bacillus cereus, Micrococcus tetragenus, and Micrococcus luteus with MIC values ranging from 1.25 to 5 μg/mL.
Collapse
Affiliation(s)
- Xin-Shu Ji
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, People's Republic of China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, People's Republic of China
| | - De-Cai Dai
- Key Laboratory of Medicinal and Edible Plants Resources of Hainan Province, Hainan Vocational University of Science and Technology, Haikou, People's Republic of China
| | - Yi-Tong Wang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, People's Republic of China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, People's Republic of China
| | - Jing-Yi Cui
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, People's Republic of China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, People's Republic of China
| | - Hai-Xiang Li
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, People's Republic of China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, People's Republic of China
| | - Xin-Ming Song
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, People's Republic of China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, People's Republic of China
| | - Ji-Ling Yi
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, People's Republic of China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, People's Republic of China
| | - Xue-Ming Zhou
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, People's Republic of China
- Key Laboratory of Medicinal and Edible Plants Resources of Hainan Province, Hainan Vocational University of Science and Technology, Haikou, People's Republic of China
| |
Collapse
|
4
|
Cai J, Liang Z, Li J, Manzoor MF, Liu H, Han Z, Zeng X. Variation in physicochemical properties and bioactivities of Morinda citrifolia L. (Noni) polysaccharides at different stages of maturity. Front Nutr 2023; 9:1094906. [PMID: 36687691 PMCID: PMC9846325 DOI: 10.3389/fnut.2022.1094906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction Morinda citrifolia L. (Noni) as an evergreen plant is a rich source of natural polysaccharides. Objective The present work aims to investigate the maturation-related changes in polysaccharides of Morinda citrifolia L. (Noni) at five stages of maturity (stages from the lowest to highest degree - 1, 2, 3, 4, and 5). Methods The chemical composition (carbohydrate, protein, uronic acid, and sulfate radical) of Noni polysaccharides was determined by different chemical assays. Ion chromatography system was used to analyze the monosaccharide composition, and the molecular weight was measured by HPGPC. The polysaccharides were also analyzed by FT-IR and their radical scavenging effect against DPPH, hydroxyl radicals and ABTS was evaluated. The UV-vis assay and gel electrophoresis assay were performed to investigate the DNA damage protective effect. Results Results indicated the significant effect of fruit maturities on the extraction yields, molecular weights, uronic acid contents, sugar levels, monosaccharide compositions and proportions, antioxidant capacities, and DNA protective effects of Noni polysaccharides. However, no fruit maturity stage had prominent impact on the sulfuric radical contents and preliminary structure characteristics. Noni polysaccharides extracted at stage 5 (N5) had the largest extraction yield (8.26 ± 0.14%), the highest sugar content (61.94 ± 1.86%) and the most potent scavenging effect on DPPH (IC50: 1.06 mg/mL) and ABTS (IC50: 1.22 mg/mL) radicals. The stronger DPPH and ABTS radical scavenging activities of N5 might be contributed by its higher content of fucose and rhamnose and smaller molecular weight. Noni polysaccharides extracted at stage 4 (N4) showed the highest uronic acid content (4.10 ± 0.12%), and the superior performance in scavenging hydroxyl radicals and protecting DNA. The greater hydroxyl radical scavenging effect of N4 might be attributed to its higher percentage of the low molecular weight counterpart. Moreover, the DNA protective effects of N4 displayed a positive correlation with its hydroxyl radical scavenging ability. Conclusion Overall, stage 4 and stage 5 could be ideal stages of fruit maturity aiming at high-quality Noni polysaccharides extraction. This study provided valuable information for the selection of suitable Noni polysaccharides to cater for various industrial applications.
Collapse
Affiliation(s)
- Jinlin Cai
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, China,Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
| | - Zijian Liang
- Faculty of Veterinary and Agricultural Sciences, School of Agriculture and Food, University of Melbourne, Parkville, VIC, Australia
| | - Jian Li
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, China,Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
| | - Muhammad Faisal Manzoor
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, China,Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
| | - Hongsheng Liu
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, China
| | - Zhong Han
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, China,Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China,*Correspondence: Zhong Han,
| | - Xinan Zeng
- School of Food Sciences and Engineering, South China University of Technology, Guangzhou, China,Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China,Xinan Zeng,
| |
Collapse
|