1
|
Zhang J, Li S, Qi Y, Shen J, Leng A, Qu J. Animal-derived peptides from Traditional Chinese medicines: medicinal potential, mechanisms, and prospects. JOURNAL OF ETHNOPHARMACOLOGY 2025:119872. [PMID: 40334760 DOI: 10.1016/j.jep.2025.119872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 03/14/2025] [Accepted: 04/22/2025] [Indexed: 05/09/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Animal-derived traditional Chinese medicines have a long-standing history in Chinese medicine, which exhibit unique efficacy due to similar structure and function with human tissue. As the major types of constituents that accounted for a relatively high proportion of animal-derived TCMs, peptides with molecular weight between 100 Da and hundreds of thousands of kDa have caught wide attention due to their outstanding bioavailability and excellent specificity. AIM OF THE STUDY This review aims to comprehensively delve into the up-to-date research progress in their pharmacology, mechanism, sequence composition, and therapeutic application, laying a solid foundation for future clinical treatment and scientific research. MATERIALS AND METHODS Relevant information on the peptides from animal-derived TCMs was collected from scientific literature databases including PubMed, CNKI, literature sources (Ph.D. and M.Sc. dissertations), and Web of Science by using the keywords "Peptides", "Animal", and "TCMs" for gradual screening in the past 30 years. RESULTS To date, the peptides from 27 kinds of animal-derived TCMs have been systematically combed. Their pharmacological activity and underlying mechanisms on multiple systems (nervous, circulatory, skeletal, and immune), as well as anti-tumor, antioxidative, and antimicrobial effects, have been sorted out. Besides, the potential safety issues and deficiencies (low bioavailability, imperfect quality management, and toxicity of raw materials) have also been pointed out. CONCLUSIONS Comprehensive analysis showed that low development and resource waste accompanied by the inadequate report about the pharmacological activity of most peptides from animal-derived TCMs make it have good research prospects. Although a breakthrough in the field of healthcare products has been made, the development potential for clinical products that bring surprising turnaround will be obtained if the above-mentioned confusions and current needs (improve identification technology and design reasonable dosage forms) are implemented.
Collapse
Affiliation(s)
- Jiahui Zhang
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China; Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
| | - Siyi Li
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China; Institute (College) of Pharmacy, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
| | - Yueyi Qi
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China; Institute (College) of Pharmacy, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
| | - Jieyu Shen
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China; Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China
| | - Aijing Leng
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China; Department of Traditional Chinese Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China.
| | - Jialin Qu
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, No. 222, Zhongshan Road, Dalian 116011, China; Institute of Integrative Medicine, Dalian Medical University, No. 9, South Road of Lvshun, Dalian 116044, China.
| |
Collapse
|
2
|
Ramos-Alcántara S, Napan MAC, Campana GL, Ortiz JT. Potential Inhibitory Effect of the Peptide Melittin Purified from Apis mellifera Venom on CTX-M-Type Extended-Spectrum β-Lactamases of Escherichia coli. Antibiotics (Basel) 2025; 14:403. [PMID: 40298530 PMCID: PMC12024418 DOI: 10.3390/antibiotics14040403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/29/2024] [Accepted: 01/15/2025] [Indexed: 04/30/2025] Open
Abstract
Background. Extended-spectrum β-lactamases (ESBLs) hydrolyze nearly all β-lactam antibiotics, affecting one of the most important groups of antimicrobials used in Gram-negative infections. Among them, CTX-M is the most widespread type of ESBL. This study aimed to evaluate the hydrolytic activity of CTX-M-type ESBLs following exposure to the antimicrobial peptide Melittin. Methods. Melittin was purified from Apis mellifera venom through ultrafiltration and characterized by SDS-PAGE. The minimum inhibitory concentration (MIC) of Melittin against ESBL-producing E. coli was determined by the broth microdilution method. The inhibition of ESBL's hydrolytic activity following exposure to sub-MIC doses of Melittin was quantified using a kinetic assay based on hydrolyzed nitrocefin. Additionally, the effect of Melittin on the expression of the blaCTX-M gene was evaluated via RT-PCR. Results. The peptide fraction of Apitoxin smaller than 10 kDa exhibited a protein band corresponding to Melittin, devoid of higher molecular weight proteins. The MIC of Melittin ranged from 50 to 80 µg/mL. Exposure to Melittin at sub-MIC doses significantly inhibited ESBL hydrolytic activity, reducing it by up to 67%. However, the transcription of the blaCTX-M gene in the presence of Melittin revealed no significant changes. Conclusions. Melittin is able to inhibit ESBL's hydrolytic activity but not blaCTX-M transcription possibly indicating an effect at the translational or post-translational level.
Collapse
Affiliation(s)
- Sheril Ramos-Alcántara
- Laboratorio de Resistencia Antibiótica y Fagoterapia, Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima 15102, Peru;
| | - María Alejandra Cornejo Napan
- Laboratorio de Resistencia Antibiótica y Fagoterapia, Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima 15102, Peru;
| | - Giovanni Lopez Campana
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, 15102, Peru;
| | - Jesus Tamariz Ortiz
- Laboratorio de Resistencia Antibiótica y Fagoterapia, Facultad de Medicina, Universidad Peruana Cayetano Heredia, Lima 15102, Peru;
| |
Collapse
|
3
|
Lima WG, Brito JCM, Verly RM, de Lima ME. Jelleine, a Family of Peptides Isolated from the Royal Jelly of the Honey Bees ( Apis mellifera), as a Promising Prototype for New Medicines: A Narrative Review. Toxins (Basel) 2024; 16:24. [PMID: 38251241 PMCID: PMC10819630 DOI: 10.3390/toxins16010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
The jelleine family is a group of four peptides (jelleines I-IV) originally isolated from the royal jelly of honey bee (Apis mellifera), but later detected in some honey samples. These oligopeptides are composed of 8-9 amino acid residues, positively charged (+2 to +3 at pH 7.2), including 38-50% of hydrophobic residues and a carboxamide C-terminus. Jelleines, generated by processing of the C-terminal region of major royal jelly proteins 1 (MRJP-1), play an important biological role in royal jelly conservation as well as in protecting bee larvae from potential pathogens. Therefore, these molecules present numerous benefits for human health, including therapeutic purposes as shown in preclinical studies. In this review, we aimed to evaluate the biological effects of jelleines in addition to characterising their toxicities and stabilities. Jelleines I-III have promising antimicrobial activity and low toxicity (LD50 > 1000 mg/Kg). However, jelleine-IV has not shown relevant biological potential. Jelleine-I, but not the other analogues, also has antiparasitic, healing, and pro-coagulant activities in addition to indirectly modulating tumor cell growth and controlling the inflammatory process. Although it is sensitive to hydrolysis by proteases, the addition of halogens increases the chemical stability of these molecules. Thus, these results suggest that jelleines, especially jelleine-I, are a potential target for the development of new, effective and safe therapeutic molecules for clinical use.
Collapse
Affiliation(s)
- William Gustavo Lima
- Programa de Pós-Graduação Stricto Sensu em Medicina e Biomedicina, Faculdade de Saúde da Santa Casa de Belo Horizonte, Avenida dos Andradas, 2688, Santa Efigênia, Belo Horizonte 30110-005, MG, Brazil;
| | - Julio Cesar Moreira Brito
- Fundação Ezequiel Dias (FUNED), Rua Conde Pereira Carneiro, 8, Gameleira, Belo Horizonte 30510-010, MG, Brazil;
| | - Rodrigo Moreira Verly
- Departamento de Química, Faculdade de Ciências Exatas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Rodovia MGT 367, 5000, Auto da Jacuba, Diamantina 39100-000, MG, Brazil;
| | - Maria Elena de Lima
- Programa de Pós-Graduação Stricto Sensu em Medicina e Biomedicina, Faculdade de Saúde da Santa Casa de Belo Horizonte, Avenida dos Andradas, 2688, Santa Efigênia, Belo Horizonte 30110-005, MG, Brazil;
| |
Collapse
|
4
|
Pereira AFM, Sani AA, Zapata TB, de Sousa DSM, Rossini BC, dos Santos LD, Rall VLM, Riccardi CDS, Fernandes Júnior A. Synergistic Antibacterial Efficacy of Melittin in Combination with Oxacillin against Methicillin-Resistant Staphylococcus aureus (MRSA). Microorganisms 2023; 11:2868. [PMID: 38138012 PMCID: PMC10745785 DOI: 10.3390/microorganisms11122868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) often cause infections with high mortality rates. Antimicrobial peptides are a source of molecules for developing antimicrobials; one such peptide is melittin, a fraction from the venom of the Apis mellifera bee. This study aimed to evaluate the antibacterial and antibiofilm activities of melittin and its association with oxacillin (mel+oxa) against MRSA isolates, and to investigate the mechanisms of action of the treatments on MRSA. Minimum inhibitory concentrations (MICs) were determined, and synergistic effects of melittin with oxacillin and cephalothin were assessed. Antibiofilm and cytotoxic activities, as well as their impact on the cell membrane, were evaluated for melittin, oxacillin, and mel+oxa. Proteomics evaluated the effects of the treatments on MRSA. Melittin mean MICs for MRSA was 4.7 μg/mL and 12 μg/mL for oxacillin. Mel+oxa exhibited synergistic effects, reducing biofilm formation, and causing leakage of proteins, nucleic acids, potassium, and phosphate ions, indicating action on cell membrane. Melittin and mel+oxa, at MIC values, did not induce hemolysis and apoptosis in HaCaT cells. The treatments resulted in differential expression of proteins associated with protein synthesis and energy metabolism. Mel+oxa demonstrated antibacterial activity against MRSA, suggesting a potential as a candidate for the development of new antibacterial agents against MRSA.
Collapse
Affiliation(s)
- Ana Flávia Marques Pereira
- The Center for the Study of Venoms and Venomous Animals of UNESP (CEVAP), São Paulo State University (UNESP), Botucatu 18619-002, São Paulo, Brazil;
| | - Alessandra Aguirra Sani
- Department of Chemical and Biological Sciences, Microbiology and Immunology Sector, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (A.A.S.); (T.B.Z.); (D.S.M.d.S.); (V.L.M.R.)
| | - Tatiane Baptista Zapata
- Department of Chemical and Biological Sciences, Microbiology and Immunology Sector, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (A.A.S.); (T.B.Z.); (D.S.M.d.S.); (V.L.M.R.)
| | - Débora Silva Marques de Sousa
- Department of Chemical and Biological Sciences, Microbiology and Immunology Sector, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (A.A.S.); (T.B.Z.); (D.S.M.d.S.); (V.L.M.R.)
| | - Bruno César Rossini
- Institute of Biotechnology (IBTEC), São Paulo State University (UNESP), Botucatu 18607-440, São Paulo, Brazil; (B.C.R.); (L.D.d.S.)
| | - Lucilene Delazari dos Santos
- Institute of Biotechnology (IBTEC), São Paulo State University (UNESP), Botucatu 18607-440, São Paulo, Brazil; (B.C.R.); (L.D.d.S.)
- Graduate Program in Tropical Diseases and Graduate Program in Research and Development (Medical Biotechnology), Botucatu Medical School (FMB), São Paulo State University (UNESP), Botucatu 18618-687, São Paulo, Brazil
| | - Vera Lúcia Mores Rall
- Department of Chemical and Biological Sciences, Microbiology and Immunology Sector, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (A.A.S.); (T.B.Z.); (D.S.M.d.S.); (V.L.M.R.)
| | - Carla dos Santos Riccardi
- Department of Bioprocesses and Biotechnology, Faculty of Agricultural Sciences (FCA), São Paulo State University (UNESP), Botucatu 18610-034, São Paulo, Brazil;
| | - Ary Fernandes Júnior
- Department of Chemical and Biological Sciences, Microbiology and Immunology Sector, Institute of Biosciences of Botucatu (IBB), São Paulo State University (UNESP), Botucatu 18618-689, São Paulo, Brazil; (A.A.S.); (T.B.Z.); (D.S.M.d.S.); (V.L.M.R.)
| |
Collapse
|
5
|
Lima WG, de Lima ME. Therapeutic Prospection of Animal Venoms-Derived Antimicrobial Peptides against Infections by Multidrug-Resistant Acinetobacter baumannii: A Systematic Review of Pre-Clinical Studies. Toxins (Basel) 2023; 15:toxins15040268. [PMID: 37104206 PMCID: PMC10143903 DOI: 10.3390/toxins15040268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
Infections caused by multidrug-resistant Acinetobacter baumannii (MDR-Ab) have become a public health emergency. Due to the small therapeutic arsenal available to treat these infections, health agencies have highlighted the importance of developing new antimicrobials against MDR-Ab. In this context, antimicrobial peptides (AMPs) stand out, and animal venoms are a rich source of these compounds. Here, we aimed to summarize the current knowledge on the use of animal venom-derived AMPs in the treatment of MDR-Ab infections in vivo. A systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The eight studies included in this review identified the antibacterial activity of eleven different AMPs against MDR-Ab. Most of the studied AMPs originated from arthropod venoms. In addition, all AMPs are positively charged and rich in lysine residues. In vivo assays showed that the use of these compounds reduces MDR-Ab-induced lethality and bacterial load in invasive (bacteremia and pneumonia) and superficial (wounds) infection models. Moreover, animal venom-derived AMPs have pleiotropic effects, such as pro-healing, anti-inflammatory, and antioxidant activities, that help treat infections. Animal venom-derived AMPs are a potential source of prototype molecules for the development of new therapeutic agents against MDR-Ab.
Collapse
Affiliation(s)
- William Gustavo Lima
- Programa de Pós Graduação em Medicina-Biomedicina, Faculdade Santa Casa de Belo Horizonte, Belo Horizonte 30150-250, MG, Brazil
| | - Maria Elena de Lima
- Programa de Pós Graduação em Medicina-Biomedicina, Faculdade Santa Casa de Belo Horizonte, Belo Horizonte 30150-250, MG, Brazil
| |
Collapse
|
6
|
Memariani M, Memariani H, Poursafavi Z, Baseri Z. Anti-fungal Effects and Mechanisms of Action of Wasp Venom-Derived Peptide Mastoparan-VT1 Against Candida albicans. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10401-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|