1
|
Rauf A, Naz S, Akram Z, Saleem M, Alomar TS, AlMasoud N, Ribaudo G. Bioactivity of 2-(3,4-Dihydroxyphenyl)-5,7-dihydroxy-2,3-dihydrochromen-4-one from pistacia chinensis on ENPP1 and aldose reductase. Nat Prod Res 2024:1-5. [PMID: 38712509 DOI: 10.1080/14786419.2024.2344744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/14/2024] [Indexed: 05/08/2024]
Abstract
Pistacia chinensis is used as a decorative tree and currently studied as a source of biofuels. Besides, its parts and extracts are endowed with several therapeutic uses which have been widely explored in traditional medicine and that are related to its rich composition in phytochemicals. Molecular docking and enzymatic inhibition tests were used to study the activity of eriodictyol, a flavonoid extracted from the barks of P. chinensis, against ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) and aldose reductase (ALR2). The compound was highlighted as a micromolar inhibitor in vitro (IC50 = 263.76 ± 1.32 µM and 4.21 ± 0.94 µM, respectively) and docking showed that eriodictyol efficiently targets the binding sites of the enzymes. In conclusion, this study unveils the potential of eriodictyol on enzymes that are involved in immunostimulation and in complications of diabetes mellitus.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Pakistan
| | - Saima Naz
- Department of Biotechnology, Bacha Khan University Charsadda, Charsadda, Pakistan
| | - Zuneera Akram
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| | - Muhammad Saleem
- Department of Chemistry, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Taghrid S Alomar
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Najla AlMasoud
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Giovanni Ribaudo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
2
|
Abu-Izneid T, Rauf A, Akram Z, Naz S, Wadood A, Muhammad N, Hayat C, Al-Awthan YS, Bahattab OS. Discovery of new α-glucosides, antiglycation agent, and in silico study of 2-(3,4-dihydroxyphenyl)-7,8-dihydroxy-3-methoxy-4H-chromen-4-one isolated from Pistacia chinensis. Heliyon 2024; 10:e27298. [PMID: 38495136 PMCID: PMC10943337 DOI: 10.1016/j.heliyon.2024.e27298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
Pistacia chinensis is locally practiced for treating diabetes, pain, inflammation, and erectile dysfunction. Therefore, the current studies subjected the crude extract/fractions and the isolated compound (2-(3,4-dihydroxyphenyl)-7,8-dihydroxy-3-methoxy-4H-chromen-4-one) to α-glucosidase inhibitor and anti-glycation activities. The development of long-term complications associated with diabetes is primarily caused by chronic hyperglycemia. Regarding α-glucosidase, the most significant inhibitory effect was observed with compound 1 (93.09%), followed by the methanolic extract (80.87%) with IC50 values of 45.86 and 86.32 μM. The maximum anti-glycation potential was shown by an isolated compound 1 followed by methanolic extract with effect inhibition of 90.12 and 72.09, respectively. Compound 1 is expected to have the highest gastrointestinal absorption rate, with a predicted absorption rate of 86.156%. This indicates oral suitability. The compound 1 is expected to have no harmful effects on the liver. In addition, our docking results suggest that alpha-glucosidase and isolated compounds showed strong interaction with ILE821, GLN900, and ALA901 residues, along with a -11.95 docking score.
Collapse
Affiliation(s)
- Tareq Abu-Izneid
- Pharmaceutical Sciences Program, College of Pharmacy, Al Ain University, Al Ain, 64141, United Arab Emirates
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Zuneera Akram
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| | - Saima Naz
- Institute of Biotechnology & Microbiology, Bacha Khan University Charsadda, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan KPK, Pakistan
| | - Naveed Muhammad
- Department of Pharmacy, Abdul Wali Khan, University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Chandni Hayat
- Department of Biochemistry, Abdul Wali Khan University Mardan KPK, Pakistan
| | - Yahya S. Al-Awthan
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Omar S. Bahattab
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| |
Collapse
|
3
|
Rauf A, Rashid U, Masoud NA, Akram Z, Saeed A, Muhammad N, Alomar TS, Naz S, Iriti M. In vivo analgesic, anti-inflammatory, sedative, muscle relaxant activities, and docking studies of 3',4',7,8-tetrahydroxy-3-methoxyflavone isolated from Pistacia chinensis. Drug Target Insights 2024; 18:47-53. [PMID: 38903608 PMCID: PMC11188735 DOI: 10.33393/dti.2024.2745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/06/2024] [Indexed: 06/22/2024] Open
Abstract
Background Pistacia chinensis is extensively employed in traditional medicine. This study aimed to isolate and evaluate the therapeutic effects of 3'4'78-tetrahydroxy-3-methoxyflavone from P. chinensis crude extract. Materials and Methods The study utilized column chromatography for isolation. The plant extract and its isolated compound were assessed for in vivo analgesic (hot plate model), anti-inflammatory (carrageenan-induced paw edema), sedative (open field model), and muscle relaxing properties (inclined plane and traction test). Results In the thermal-induced analgesic model, a significant analgesic effect was observed for the extract (25, 50, and 100 mg/kg) and the isolated compound (2.5, 5, 10, and 15 mg/kg) at higher doses. The extract (100 mg/kg) significantly prolonged latency time (21.98 seconds) after 120 minutes of administration. The isolated compound elevated the latency time (20.03 seconds) after 30 minutes, remaining significant up to 120 minutes with a latency time of 24.11 seconds. The anti-inflammatory effect showed a reduction in inflammatory reactions by 50.23% (extract) and 67.09% (compound) after the fifth hour of treatment. Both samples demonstrated significant sedative effects, with the extract hindering movement by 54.11 lines crossed compared to the negative control (180.99 lines). The isolated compound reduced the number of lines crossed to 15.23±SEM compared to the negative control. Both samples were also significant muscle relaxants. Docking studies indicated that the compound's therapeutic effect is due to inhibiting COX and nociceptive pathways. Conclusion The isolated compound from Pistacia chinensis exhibits significant analgesic, anti-inflammatory, sedative, and muscle relaxing properties, with potential therapeutic applications by inhibiting COX and nociceptive pathways.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa - Pakistan
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad - Pakistan
| | - Najla Al Masoud
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh - Saudi Arabia
| | - Zuneera Akram
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Baqai Medical University, Karachi - Pakistan
| | - Anees Saeed
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad - Pakistan
| | - Naveed Muhammad
- Department of Pharmacy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa - Pakistan
| | - Taghrid S. Alomar
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh - Saudi Arabia
| | - Saima Naz
- Department of Biotechnology, Bacha Khan University, Khyber Pakhtunkhwa - Pakistan
| | - Marcello Iriti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan - Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Firenze - Italy
| |
Collapse
|
4
|
Rodrigues Gazolla PA, Lima WP, de Aguiar AR, Gonçalves Borsodi MP, Costa AV, de Oliveira FM, de Oliveira OV, Andreazza Costa MC, Castro Ferreira MM, do Nascimento CJ, Junker J, Vaz BG, Teixeira RR. Leishmanicidal activity and 4D quantitative structure-activity relationship and molecular docking studies of vanillin-containing 1,2,3-triazole derivatives. Future Med Chem 2024; 16:139-155. [PMID: 38131191 DOI: 10.4155/fmc-2023-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Aim: The assessment of the antileishmanial potential of 22 vanillin-containing 1,2,3-triazole derivatives against Leishmania braziliensis is reported. Materials & methods: Initial screening was performed against the parasite promastigote form. The most active compound, 4b, targeted parasites within amastigotes (IC50 = 4.2 ± 1.0 μmol l-1), presenting low cytotoxicity and a selective index value of 39. 4D quantitative structure-activity relationship and molecular docking studies provided insights into structure-activity and biological effects. Conclusion: A vanillin derivative with significant antileishmanial activity was identified. Enhanced activity was linked to increased electrostatic and Van der Waals interactions near the benzyl ring of the derivatives. Molecular docking indicated the inhibition of the Leishmania amazonensis sterol 14α-demethylase, using Leishmania infantum sterol 14α-demethylase as a model, without affecting the human isoform. Inhibition was active site competition with lanosterol.
Collapse
Affiliation(s)
- Poliana Aparecida Rodrigues Gazolla
- Grupo de Pesquisa e Síntese de Compostos Bioativos (GSPCB), Departamento de Química, Universidade Federal de Viçosa, Viçosa-MG, 36570-900, Brazil
| | - Wallace Pacienza Lima
- Escola de Ciências da Saúde, Universidade do Grande Rio, Rio de Janeiro-RJ, 22775-003, Brazil
| | - Alex Ramos de Aguiar
- Grupo de Pesquisa e Síntese de Compostos Bioativos (GSPCB), Departamento de Química, Universidade Federal de Viçosa, Viçosa-MG, 36570-900, Brazil
| | - Maria Paula Gonçalves Borsodi
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Adilson Vidal Costa
- Departamento de Química e Física, Universidade Federal do Espírito Santo, Alegre-ES, 29500-000, Brazil
| | | | | | | | | | - Cláudia Jorge do Nascimento
- Departamento de Ciências Naturais, Instituto de Biociências, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro-RJ, 22290-240, Brazil
| | - Jochen Junker
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro-RJ, 21040-361, Brazil
| | - Boniek Gontijo Vaz
- Instituto de Química, Universidade Federal de Goiás, Goiânia-GO, 74001-970, Brazil
| | - Róbson Ricardo Teixeira
- Grupo de Pesquisa e Síntese de Compostos Bioativos (GSPCB), Departamento de Química, Universidade Federal de Viçosa, Viçosa-MG, 36570-900, Brazil
| |
Collapse
|