1
|
Denfeld QE, Pavlovic NV, Lee CS, Jacobs JM, Roberts Davis M, Powell SM, Gritsenko M, Joseph SM, Habecker BA. Plasma proteomic biomarkers of physical frailty in heart failure: a propensity score matched discovery-based pilot study. BMC Cardiovasc Disord 2025; 25:284. [PMID: 40234744 PMCID: PMC12001641 DOI: 10.1186/s12872-025-04725-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 04/01/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Physical frailty is highly prevalent in heart failure (HF), but we lack an understanding of the underlying pathophysiology. Proteomic evaluation of plasma samples may elucidate potential mechanisms and biomarkers of physical frailty in HF. OBJECTIVES We aimed to identify plasma proteomic biomarkers that are differentially expressed between physically frail and non-physically frail adults with HF. METHODS This was a secondary analysis of a subset of data and plasma samples from a study of frailty among patients with New York Heart Association (NYHA) Functional Classification I-IV HF. Physical frailty was measured using the Frailty Phenotype Criteria. Propensity score matching was used to match pairs of physically frail (n = 20) vs. non-physically frail (n = 20) patients on clinical characteristics. Plasma samples were processed using a sensitive liquid chromatography mass spectrometry platform, utilizing a multiplexed tandem mass tag-labeled quantitative proteomics approach. Differentially expressed proteins were quantified individually using paired t tests with associated log fold change of 0.3 and Fisher's combined p values. RESULTS The sample (n = 40) was 62.8 ± 16.9 years old, 58% female, and 55% NYHA Class III/IV. Proteomic analysis revealed 7 proteins differentially expressed using full differential criteria: matrix metalloproteinase-14 was downregulated in frailty, and copine-1, low affinity immunoglobulin gamma Fc region receptor III-A and III-B, probable non-functional immunoglobulin kappa variable 2D-24, glutathione S-transferase Mu 1, and argininosuccinate lyase were upregulated in frailty. CONCLUSIONS Proteomic biomarkers related to the immune system, stress response, and detoxification were differentially expressed between physically frail and non-physically frail adults with HF.
Collapse
Affiliation(s)
- Quin E Denfeld
- School of Nursing, Oregon Health & Science University School of Nursing, 3455, S.W. U.S. Veterans Hospital Road, Portland, OR, 97239 - 2941, USA.
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA.
| | | | - Christopher S Lee
- William F. Connell School of Nursing, Boston College, Chestnut Hill, MA, USA
| | - Jon M Jacobs
- Earth and Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Mary Roberts Davis
- School of Nursing, Oregon Health & Science University School of Nursing, 3455, S.W. U.S. Veterans Hospital Road, Portland, OR, 97239 - 2941, USA
| | - Samantha M Powell
- Earth and Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Marina Gritsenko
- Earth and Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | - Beth A Habecker
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
2
|
de Lima EP, Tanaka M, Lamas CB, Quesada K, Detregiachi CRP, Araújo AC, Guiguer EL, Catharin VMCS, de Castro MVM, Junior EB, Bechara MD, Ferraz BFR, Catharin VCS, Laurindo LF, Barbalho SM. Vascular Impairment, Muscle Atrophy, and Cognitive Decline: Critical Age-Related Conditions. Biomedicines 2024; 12:2096. [PMID: 39335609 PMCID: PMC11428869 DOI: 10.3390/biomedicines12092096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/22/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The triad of vascular impairment, muscle atrophy, and cognitive decline represents critical age-related conditions that significantly impact health. Vascular impairment disrupts blood flow, precipitating the muscle mass reduction seen in sarcopenia and the decline in neuronal function characteristic of neurodegeneration. Our limited understanding of the intricate relationships within this triad hinders accurate diagnosis and effective treatment strategies. This review analyzes the interrelated mechanisms that contribute to these conditions, with a specific focus on oxidative stress, chronic inflammation, and impaired nutrient delivery. The aim is to understand the common pathways involved and to suggest comprehensive therapeutic approaches. Vascular dysfunctions hinder the circulation of blood and the transportation of nutrients, resulting in sarcopenia characterized by muscle atrophy and weakness. Vascular dysfunction and sarcopenia have a negative impact on physical function and quality of life. Neurodegenerative diseases exhibit comparable pathophysiological mechanisms that affect cognitive and motor functions. Preventive and therapeutic approaches encompass lifestyle adjustments, addressing oxidative stress, inflammation, and integrated therapies that focus on improving vascular and muscular well-being. Better understanding of these links can refine therapeutic strategies and yield better patient outcomes. This study emphasizes the complex interplay between vascular dysfunction, muscle degeneration, and cognitive decline, highlighting the necessity for multidisciplinary treatment approaches. Advances in this domain promise improved diagnostic accuracy, more effective therapeutic options, and enhanced preventive measures, all contributing to a higher quality of life for the elderly population.
Collapse
Affiliation(s)
- Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
| | - Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Danube Neuroscience Research Laboratory, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos Krt. 113, H-6725 Szeged, Hungary
| | - Caroline Barbalho Lamas
- Department of Gerontology, Universidade Federal de São Carlos, UFSCar, São Carlos 13565-905, SP, Brazil
| | - Karina Quesada
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
| | - Claudia Rucco P. Detregiachi
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Virgínia Maria Cavallari Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Department of Odontology, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Edgar Baldi Junior
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | | | | | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17525-902, SP, Brazil
- Department of Administration, Associate Degree in Hospital Management, Universidade de Marília (UNIMAR), Marília 17525-902, SP, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
- Research Coordination, UNIMAR Charity Hospital (HBU), University of Marília (UNIMAR), Marília 17525-902, SP, Brazil
| |
Collapse
|
3
|
Dowling P, Gargan S, Zweyer M, Henry M, Meleady P, Swandulla D, Ohlendieck K. Proteomic reference map for sarcopenia research: mass spectrometric identification of key muscle proteins of organelles, cellular signaling, bioenergetic metabolism and molecular chaperoning. Eur J Transl Myol 2024; 34:12565. [PMID: 38787292 PMCID: PMC11264233 DOI: 10.4081/ejtm.2024.12565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 05/25/2024] Open
Abstract
During the natural aging process, frailty is often associated with abnormal muscular performance. Although inter-individual differences exit, in most elderly the tissue mass and physiological functionality of voluntary muscles drastically decreases. In order to study age-related contractile decline, animal model research is of central importance in the field of biogerontology. Here we have analyzed wild type mouse muscle to establish a proteomic map of crude tissue extracts. Proteomics is an advanced and large-scale biochemical method that attempts to identify all accessible proteins in a given biological sample. It is a technology-driven approach that uses mass spectrometry for the characterization of individual protein species. Total protein extracts were used in this study in order to minimize the potential introduction of artefacts due to excess subcellular fractionation procedures. In this report, the proteomic survey of aged muscles has focused on organellar marker proteins, as well as proteins that are involved in cellular signaling, the regulation of ion homeostasis, bioenergetic metabolism and molecular chaperoning. Hence, this study has establish a proteomic reference map of a highly suitable model system for future aging research.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| | - Margit Zweyer
- Department of Neonatology and Paediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases, Bonn.
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin.
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin.
| | - Dieter Swandulla
- Institute of Physiology, Medical Faculty, University of Bonn, Bonn.
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| |
Collapse
|
4
|
Dowling P, Gargan S, Zweyer M, Henry M, Meleady P, Swandulla D, Ohlendieck K. Proteomic reference map for sarcopenia research: mass spectrometric identification of key muscle proteins located in the sarcomere, cytoskeleton and the extracellular matrix. Eur J Transl Myol 2024; 34:12564. [PMID: 38787300 PMCID: PMC11264229 DOI: 10.4081/ejtm.2024.12564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 05/25/2024] Open
Abstract
Sarcopenia of old age is characterized by the progressive loss of skeletal muscle mass and concomitant decrease in contractile strength. Age-related skeletal muscle dysfunctions play a key pathophysiological role in the frailty syndrome and can result in a drastically diminished quality of life in the elderly. Here we have used mass spectrometric analysis of the mouse hindlimb musculature to establish the muscle protein constellation at advanced age of a widely used sarcopenic animal model. Proteomic results were further analyzed by systems bioinformatics of voluntary muscles. In this report, the proteomic survey of aged muscles has focused on the expression patterns of proteins involved in the contraction-relaxation cycle, membrane cytoskeletal maintenance and the formation of the extracellular matrix. This includes proteomic markers of the fast versus slow phenotypes of myosin-containing thick filaments and actin-containing thin filaments, as well as proteins that are associated with the non-sarcomeric cytoskeleton and various matrisomal layers. The bioanalytical usefulness of the newly established reference map was demonstrated by the comparative screening of normal versus dystrophic muscles of old age, and findings were verified by immunoblot analysis.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| | - Margit Zweyer
- Department of Neonatology and Paediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases, Bonn.
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin.
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin.
| | - Dieter Swandulla
- Institute of Physiology, Medical Faculty, University of Bonn, Bonn.
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| |
Collapse
|
5
|
Dowling P, Swandulla D, Ohlendieck K. Mass Spectrometry-Based Proteomic Technology and Its Application to Study Skeletal Muscle Cell Biology. Cells 2023; 12:2560. [PMID: 37947638 PMCID: PMC10649384 DOI: 10.3390/cells12212560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Voluntary striated muscles are characterized by a highly complex and dynamic proteome that efficiently adapts to changed physiological demands or alters considerably during pathophysiological dysfunction. The skeletal muscle proteome has been extensively studied in relation to myogenesis, fiber type specification, muscle transitions, the effects of physical exercise, disuse atrophy, neuromuscular disorders, muscle co-morbidities and sarcopenia of old age. Since muscle tissue accounts for approximately 40% of body mass in humans, alterations in the skeletal muscle proteome have considerable influence on whole-body physiology. This review outlines the main bioanalytical avenues taken in the proteomic characterization of skeletal muscle tissues, including top-down proteomics focusing on the characterization of intact proteoforms and their post-translational modifications, bottom-up proteomics, which is a peptide-centric method concerned with the large-scale detection of proteins in complex mixtures, and subproteomics that examines the protein composition of distinct subcellular fractions. Mass spectrometric studies over the last two decades have decisively improved our general cell biological understanding of protein diversity and the heterogeneous composition of individual myofibers in skeletal muscles. This detailed proteomic knowledge can now be integrated with findings from other omics-type methodologies to establish a systems biological view of skeletal muscle function.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, Faculty of Medicine, University of Bonn, D53115 Bonn, Germany;
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
6
|
Dowling P, Gargan S, Swandulla D, Ohlendieck K. Fiber-Type Shifting in Sarcopenia of Old Age: Proteomic Profiling of the Contractile Apparatus of Skeletal Muscles. Int J Mol Sci 2023; 24:2415. [PMID: 36768735 PMCID: PMC9916839 DOI: 10.3390/ijms24032415] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The progressive loss of skeletal muscle mass and concomitant reduction in contractile strength plays a central role in frailty syndrome. Age-related neuronal impairments are closely associated with sarcopenia in the elderly, which is characterized by severe muscular atrophy that can considerably lessen the overall quality of life at old age. Mass-spectrometry-based proteomic surveys of senescent human skeletal muscles, as well as animal models of sarcopenia, have decisively improved our understanding of the molecular and cellular consequences of muscular atrophy and associated fiber-type shifting during aging. This review outlines the mass spectrometric identification of proteome-wide changes in atrophying skeletal muscles, with a focus on contractile proteins as potential markers of changes in fiber-type distribution patterns. The observed trend of fast-to-slow transitions in individual human skeletal muscles during the aging process is most likely linked to a preferential susceptibility of fast-twitching muscle fibers to muscular atrophy. Studies with senescent animal models, including mostly aged rodent skeletal muscles, have confirmed fiber-type shifting. The proteomic analysis of fast versus slow isoforms of key contractile proteins, such as myosin heavy chains, myosin light chains, actins, troponins and tropomyosins, suggests them as suitable bioanalytical tools of fiber-type transitions during aging.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
7
|
Gonçalves RSDSA, Maciel ÁCC, Rolland Y, Vellas B, de Souto Barreto P. Frailty biomarkers under the perspective of geroscience: A narrative review. Ageing Res Rev 2022; 81:101737. [PMID: 36162706 DOI: 10.1016/j.arr.2022.101737] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 01/31/2023]
Abstract
Cellular and molecular aging biomarkers might contribute to identify at-risk individuals for frailty before overt clinical manifestations appear. Although studies on the associations of aging biomarkers and frailty exist, no investigation has gathered this information using a structured framework for identifying aging biomarkers; as a result, the evidence on frailty and aging biomarkers is diffuse and incomplete. Therefore, this narrative review aimed to gather information on the associations of the hallmarks of aging and frailty under the perspective of geroscience. The literature on human studies on this topic is sparse and mainly composed of cross-sectional investigations performed in small study samples. The main putative aging biomarkers associated to frailty were: mitochondrial DNA copy number (genomic instability and mitochondrial dysfunction), telomere length (telomere attrition), global DNA methylation (epigenetic alterations), Hsp70 and Hsp72 (loss of proteostasis), IGF-1 and SIRT1 (deregulated nutrient-sensing), GDF-15 (mitochondrial dysfunction, cellular senescence and altered intercellular communication), CD4 + and CD8 + cell percentages (cellular senescence), circulating osteogenic progenitor (COP) cells (stem cell exhaustion), and IL-6, CRP and TNF-alpha (altered intercellular communication). IGF-1, SIRT1, GDF-15, IL-6, CRP and TNF-alpha presented more evidence among these biomarkers, highlighting the importance of inflammation and nutrient sensing on frailty. Further longitudinal studies investigating biomarkers across the hallmarks of aging would provide valuable information on this topic.
Collapse
Affiliation(s)
| | | | - Yves Rolland
- Gerontopole of Toulouse, Institute of Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France; CERPOP, Inserm 1295, Université de Toulouse, UPS, Toulouse, France.
| | - Bruno Vellas
- Gerontopole of Toulouse, Institute of Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France; CERPOP, Inserm 1295, Université de Toulouse, UPS, Toulouse, France.
| | - Philipe de Souto Barreto
- Gerontopole of Toulouse, Institute of Aging, Toulouse University Hospital (CHU Toulouse), Toulouse, France; CERPOP, Inserm 1295, Université de Toulouse, UPS, Toulouse, France.
| |
Collapse
|
8
|
Association of proteomic markers with nutritional risk and response to nutritional support: a secondary pilot study of the EFFORT trial using an untargeted proteomics approach. Clin Nutr ESPEN 2022; 48:282-290. [DOI: 10.1016/j.clnesp.2022.01.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/05/2022] [Accepted: 01/27/2022] [Indexed: 11/23/2022]
|
9
|
Verghese J, Ayers E, Sathyan S, Lipton RB, Milman S, Barzilai N, Wang C. Trajectories of frailty in aging: Prospective cohort study. PLoS One 2021; 16:e0253976. [PMID: 34252094 PMCID: PMC8274857 DOI: 10.1371/journal.pone.0253976] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/16/2021] [Indexed: 12/16/2022] Open
Abstract
Background Emerging evidence suggests that there is significant variability in the progression of frailty in aging. We aimed to identify latent subpopulations of frailty trajectories, and examine their clinical and biological correlates. Methods We characterized frailty using a 41-item cumulative deficit score at baseline and annual visits up to 12 years in 681 older adults (55% women, mean age 74·6 years). Clinical risk profile and walking while talking performance as a clinical marker of trajectories were examined. Mortality risk associated with trajectories was evaluated using Cox regression adjusted for established survival predictors, and reported as hazard ratios (HR). Proteome-wide analysis was done. Findings Latent class modeling identified 4 distinct frailty trajectories: relatively stable (34·4%) as well as mild (36·1%), moderate (24·1%) and severely frail (5·4%). Four distinct classes of frailty trajectories were also shown in an independent sample of 515 older adults (60% women, 68% White, 26% Black). The stable group took a median of 31 months to accumulate one additional deficit compared to 20 months in the severely frail group. The worst trajectories were associated with modifiable risk factors such as low education, living alone, obesity, and physical inactivity as well as slower walking while talking speed. In the pooled sample, mild (HR 2·33, 95% CI 1·30–4·18), moderate (HR 2·49, 95% CI 1·33–4·66), and severely frail trajectories (HR 5·28, 95% CI 2·68–10·41) had higher mortality compared to the stable group. Proteomic analysis showed 11 proteins in lipid metabolism and growth factor pathways associated with frailty trajectories. Conclusion Frailty shows both stable and accelerated patterns in aging, which can be distinguished clinically and biologically.
Collapse
Affiliation(s)
- Joe Verghese
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| | - Emmeline Ayers
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Sanish Sathyan
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Richard B. Lipton
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Psychiatry, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Sofiya Milman
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Nir Barzilai
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Cuiling Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
10
|
Dobaria V, Hadaya J, Sanaiha Y, Aguayo E, Sareh S, Benharash P. The Pragmatic Impact of Frailty on Outcomes of Coronary Artery Bypass Grafting. Ann Thorac Surg 2021; 112:108-115. [DOI: 10.1016/j.athoracsur.2020.08.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/12/2020] [Accepted: 08/18/2021] [Indexed: 12/14/2022]
|
11
|
Gerdle B, Ghafouri B. Proteomic studies of common chronic pain conditions - a systematic review and associated network analyses. Expert Rev Proteomics 2020; 17:483-505. [DOI: 10.1080/14789450.2020.1797499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Björn Gerdle
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Bijar Ghafouri
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
12
|
Omics biomarkers for frailty in older adults. Clin Chim Acta 2020; 510:363-372. [PMID: 32745578 DOI: 10.1016/j.cca.2020.07.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022]
Abstract
Frailty is a clinical state characterized by an age-related unsteady state of the body, a decline in physiological function, and an increased vulnerability to adverse outcomes. Early diagnosis of frailty is important for improving the quality of life in older adults and promoting healthy aging. The biological mechanisms underlying frailty have been extensively studied in recent years. Combining assessment tools and biomarkers can facilitate the early diagnosis of frailty. However, there is a lack of stable and reliable frailty-related biomarkers for use in clinical practice. Advances in the multi-omics platforms have provided new information on the molecular mechanisms underlying frailty. Thus, identifying biomarkers using omics-based approaches helps explore the physiological mechanisms underlying frailty, and aids the evaluation of the risk of frailty development and progression. This article reviews the current status of frailty biomarkers from the genomics, transcriptomics, proteomics, and metabolomics perspectives.
Collapse
|
13
|
Picca A, Coelho-Junior HJ, Cesari M, Marini F, Miccheli A, Gervasoni J, Bossola M, Landi F, Bernabei R, Marzetti E, Calvani R. The metabolomics side of frailty: Toward personalized medicine for the aged. Exp Gerontol 2019; 126:110692. [PMID: 31421185 DOI: 10.1016/j.exger.2019.110692] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/24/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022]
Abstract
Frailty encompasses several domains (i.e., metabolic, physical, cognitive). The multisystem derangements underlying frailty pathophysiology, its phenotypic heterogeneity, and the fluctuations of individuals across severity states have hampered a comprehensive appraisal of the condition. Circulating biomarkers emerged as an alleged tool for capturing this complexity and, as proxies for organismal metabolic changes, may hold the advantages of: 1) supporting diagnosis, 2) tracking the progression, 3) assisting healthcare professionals in clinical and therapeutic decision-making, and 4) verifying the efficacy of an intervention before measurable clinical manifestations occur. Among available analytical tools, metabolomics are able to identify and quantify the (ideally) whole repertoire of small molecules in biological matrices (i.e., cells, tissues, and biological fluids). Results of metabolomics analysis may define the final output of genome-environment interactions at the individual level. This entire collection of metabolites is called "metabolome" and is highly dynamic. Here, we discuss how monitoring the dynamics of metabolic profiles may provide a read-out of the environmental and clinical disturbances affecting cell homeostasis in frailty-associated conditions.
Collapse
Affiliation(s)
- Anna Picca
- Università Cattolica del Sacro Cuore, Institute of Internal Medicine and Geriatrics, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Hélio José Coelho-Junior
- Università Cattolica del Sacro Cuore, Institute of Internal Medicine and Geriatrics, 00168 Rome, Italy; Applied Kinesiology Laboratory-LCA, School of Physical Education, University of Campinas, 13.083-851 Campinas, SP, Brazil
| | - Matteo Cesari
- Department of Clinical Sciences and Community Health, Università di Milano, 20122 Milan, Italy; Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Federico Marini
- Department of Chemistry, Sapienza Università di Roma, 00168 Rome, Italy
| | - Alfredo Miccheli
- Department of Chemistry, Sapienza Università di Roma, 00168 Rome, Italy
| | - Jacopo Gervasoni
- Università Cattolica del Sacro Cuore, Institute of Internal Medicine and Geriatrics, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Maurizio Bossola
- Università Cattolica del Sacro Cuore, Institute of Internal Medicine and Geriatrics, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Francesco Landi
- Università Cattolica del Sacro Cuore, Institute of Internal Medicine and Geriatrics, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Roberto Bernabei
- Università Cattolica del Sacro Cuore, Institute of Internal Medicine and Geriatrics, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy.
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy.
| | - Riccardo Calvani
- Università Cattolica del Sacro Cuore, Institute of Internal Medicine and Geriatrics, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| |
Collapse
|