1
|
Shitara Y, Konno R, Yoshihara M, Kashima K, Ito A, Mukai T, Kimoto G, Kakiuchi S, Ishikawa M, Kakihara T, Nagamatsu T, Takahashi N, Fujishiro J, Kawakami E, Ohara O, Kawashima Y, Watanabe E. Host-derived protein profiles of human neonatal meconium across gestational ages. Nat Commun 2024; 15:5543. [PMID: 39019879 PMCID: PMC11255260 DOI: 10.1038/s41467-024-49805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/19/2024] [Indexed: 07/19/2024] Open
Abstract
Meconium, a non-invasive biomaterial reflecting prenatal substance accumulation, could provide valuable insights into neonatal health. However, the comprehensive protein profile of meconium across gestational ages remains unclear. Here, we conducted an extensive proteomic analysis of first meconium from 259 newborns across varied gestational ages to delineate protein composition and elucidate its relevance to neonatal diseases. The first meconium samples were collected, with the majority obtained before feeding, and the mean time for the first meconium passage from the anus was 11.9 ± 9.47 h. Our analysis revealed 5370 host-derived meconium proteins, which varied depending on sex and gestational age. Specifically, meconium from preterm infants exhibited elevated concentrations of proteins associated with the extracellular matrix. Additionally, the protein profiles of meconium also exhibited unique variations depending on both specific diseases, including gastrointestinal diseases, congenital heart diseases, and maternal conditions. Furthermore, we developed a machine learning model to predict gestational ages using meconium proteins. Our model suggests that newborns with gastrointestinal diseases and congenital heart diseases may have immature gastrointestinal systems. These findings highlight the intricate relationship between clinical parameters and meconium protein composition, offering potential for a novel approach to assess neonatal gastrointestinal health.
Collapse
Affiliation(s)
- Yoshihiko Shitara
- Department of Pediatrics, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryo Konno
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Masahito Yoshihara
- Institute for Advanced Academic Research (IAAR), Chiba University, Chiba, Japan
- Department of Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Osaka, Japan
| | - Kohei Kashima
- Department of Pediatrics, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Atsushi Ito
- Department of Pediatrics, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeo Mukai
- Department of Pediatrics, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Goh Kimoto
- Department of Pediatrics, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satsuki Kakiuchi
- Department of Pediatrics, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaki Ishikawa
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Tomo Kakihara
- Department of Pediatric Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Faculty of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Naoto Takahashi
- Department of Pediatrics, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Fujishiro
- Department of Pediatric Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eiryo Kawakami
- Institute for Advanced Academic Research (IAAR), Chiba University, Chiba, Japan
- Department of Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, RIKEN, Kanagawa, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| | - Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan.
| | - Eiichiro Watanabe
- Department of Pediatric Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
- Department of Surgery, Gunma Children's Medical Center, Gunma, Japan.
| |
Collapse
|
2
|
Campesi I, Capobianco G, Cano A, Lodde V, Cruciani S, Maioli M, Sotgiu G, Idda ML, Puci MV, Ruoppolo M, Costanzo M, Caterino M, Cambosu F, Montella A, Franconi F. Stratification of Amniotic Fluid Cells and Amniotic Fluid by Sex Opens Up New Perspectives on Fetal Health. Biomedicines 2023; 11:2830. [PMID: 37893203 PMCID: PMC10604128 DOI: 10.3390/biomedicines11102830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/29/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Amniotic fluid is essential for fetus wellbeing and is used to monitor pregnancy and predict fetal outcomes. Sex affects health and medicine from the beginning of life, but knowledge of its influence on cell-depleted amniotic fluid (AF) and amniotic fluid cells (AFCs) is still neglected. We evaluated sex-related differences in AF and in AFCs to extend personalized medicine to prenatal life. AFCs and AF were obtained from healthy Caucasian pregnant women who underwent amniocentesis at the 16th-18th week of gestation for advanced maternal age. In the AF, inflammation biomarkers (TNFα, IL6, IL8, and IL4), malondialdehyde, nitrites, amino acids, and acylcarnitines were measured. Estrogen receptors and cell fate (autophagy, apoptosis, senescence) were measured in AFCs. TNFα, IL8, and IL4 were higher in female AF, whereas IL6, nitrites, and MDA were similar. Valine was higher in male AF, whereas several acylcarnitines were sexually different, suggesting a mitochondrial involvement in establishing sex differences. Female AFCs displayed higher expression of ERα protein and a higher ERα/ERβ ratio. The ratio of LC3II/I, an index of autophagy, was higher in female AFCs, while LC3 gene was similar in both sexes. No significant sex differences were found in the expression of the lysosomal protein LAMP1, while p62 was higher in male AFCs. LAMP1 gene was upregulated in male AFCs, while p62 gene was upregulated in female ones. Finally, caspase 9 activity and senescence linked to telomeres were higher in female AFCs, while caspase 3 and β-galactosidase activities were similar. This study supports the idea that sex differences start very early in prenatal life and influence specific parameters, suggesting that it may be relevant to appreciate sex differences to cover knowledge gaps. This might lead to improving the diagnosis of risk prediction for pregnancy complications and achieving a more satisfactory monitoring of fetus health, even preventing future diseases in adulthood.
Collapse
Affiliation(s)
- Ilaria Campesi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (V.L.); (S.C.); (M.M.); (A.M.)
- Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, 07100 Sassari, Italy;
| | - Giampiero Capobianco
- Gynecologic and Obstetric Clinic, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Antonella Cano
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (V.L.); (S.C.); (M.M.); (A.M.)
| | - Valeria Lodde
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (V.L.); (S.C.); (M.M.); (A.M.)
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (V.L.); (S.C.); (M.M.); (A.M.)
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (V.L.); (S.C.); (M.M.); (A.M.)
| | - Giovanni Sotgiu
- Clinical Epidemiology and Medical Statistics Unit, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (G.S.); (M.V.P.)
| | - Maria Laura Idda
- Institute of Genetics and Biomedical Research, 07100 Sassari, Italy;
| | - Mariangela Valentina Puci
- Clinical Epidemiology and Medical Statistics Unit, Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy; (G.S.); (M.V.P.)
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (M.R.); (M.C.); (M.C.)
- CEINGE—Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (M.R.); (M.C.); (M.C.)
- CEINGE—Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (M.R.); (M.C.); (M.C.)
- CEINGE—Biotecnologie Avanzate s.c.ar.l., 80145 Naples, Italy
| | - Francesca Cambosu
- Genetics and Developmental Biology Unit, Azienda Ospedaliera Universitaria Sassari, 07100 Sassari, Italy;
| | - Andrea Montella
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (V.L.); (S.C.); (M.M.); (A.M.)
| | - Flavia Franconi
- Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, 07100 Sassari, Italy;
| |
Collapse
|
3
|
Identification of Gravida Serum Biomarkers for Noninvasive Prenatal Diagnosis Fetal Congenital Heart Disease. J Cardiovasc Transl Res 2023; 16:255-266. [PMID: 36178661 DOI: 10.1007/s12265-022-10301-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/23/2022] [Indexed: 10/14/2022]
Abstract
Congenital heart disease (CHD) is well established as the most common congenital defect worldwide. Given the lack of biomarkers available, we aimed to identify new biomarkers for the noninvasive prenatal diagnosis of fetal CHD. This study used data-independent acquisition (DIA) to explore potential protein biomarkers that co-expressed in gravida serum (GS) and fetal amniotic fluid (AF). Next, parallel reaction monitoring (PRM), enzyme-linked immunosorbent assay (ELISA), receiver operating characteristic curve (ROC) analysis, and the immunohistochemistry (IHC) were performed to validate the potential biomarkers. Based on DIA and PRM proteomics and bioinformatics results, we identified POSTN and PAPPA in GS as candidate biomarkers. Their differential expression during ELISA and IHC were generally consistent with our proteomics results. POSTN combined with PAPPA in GS yield a good diagnose fetal CHD with sensitivity of 83.9%, specificity of 73.9%, and an area under curve (AUC) of 0.842. This is the first study showing that POSTN in GS and AF is associated with fetal CHD. POSTN and PAPPA have huge prospects for application as potential biomarkers in the noninvasive prenatal diagnosis of fetal CHD. Congenital heart disease (CHD) is well-established as the most common congenital defect worldwide. Given the lack of biomarkers available, we aimed to identify new biomarkers for the noninvasive prenatal diagnosis of fetal CHD. We used data independent acquisition (DIA) to explore potential protein biomarkers that co-expressed in gravida serum (GS) and fetal amniotic fluid (AF). Next, parallel reaction monitoring (PRM), enzyme-linked immunosorbent assay (ELISA), receiver operating characteristic curve (ROC) analysis, and the immunohistochemistry (IHC) were performed to validate the potential biomarkers. Based on DIA and PRM proteomics and bioinformatics results, we identified POSTN and PAPPA in GS as candidate biomarkers. Their differential expression during ELISA and IHC were generally consistent with our proteomics results. POSTN combined with PAPPA in GS yield a good diagnose fetal CHD with sensitivity of 83.9 %, specificity of 73.9%, and an area under curve (AUC) of 0.842. This is the first study showing that POSTN in GS and AF is associated with fetal CHD. POSTN and PAPPA have huge prospects for application as potential biomarkers in the noninvasive prenatal diagnosis of fetal CHD.
Collapse
|
4
|
Bhatti G, Romero R, Gomez-Lopez N, Chaiworapongsa T, Jung E, Gotsch F, Pique-Regi R, Pacora P, Hsu CD, Kavdia M, Tarca AL. The amniotic fluid proteome changes with gestational age in normal pregnancy: a cross-sectional study. Sci Rep 2022; 12:601. [PMID: 35022423 PMCID: PMC8755742 DOI: 10.1038/s41598-021-04050-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/02/2021] [Indexed: 11/28/2022] Open
Abstract
The cell-free transcriptome in amniotic fluid (AF) has been shown to be informative of physiologic and pathologic processes in pregnancy; however, the change in AF proteome with gestational age has mostly been studied by targeted approaches. The objective of this study was to describe the gestational age-dependent changes in the AF proteome during normal pregnancy by using an omics platform. The abundance of 1310 proteins was measured on a high-throughput aptamer-based proteomics platform in AF samples collected from women during midtrimester (16-24 weeks of gestation, n = 15) and at term without labor (37-42 weeks of gestation, n = 13). Only pregnancies without obstetrical complications were included in the study. Almost 25% (320) of AF proteins significantly changed in abundance between the midtrimester and term gestation. Of these, 154 (48.1%) proteins increased, and 166 (51.9%) decreased in abundance at term compared to midtrimester. Tissue-specific signatures of the trachea, salivary glands, brain regions, and immune system were increased while those of the gestational tissues (uterus, placenta, and ovary), cardiac myocytes, and fetal liver were decreased at term compared to midtrimester. The changes in AF protein abundance were correlated with those previously reported in the cell-free AF transcriptome. Intersecting gestational age-modulated AF proteins and their corresponding mRNAs previously reported in the maternal blood identified neutrophil-related protein/mRNA pairs that were modulated in the same direction. The first study to utilize an aptamer-based assay to profile the AF proteome modulation with gestational age, it reveals that almost one-quarter of the proteins are modulated as gestation advances, which is more than twice the fraction of altered plasma proteins (~ 10%). The results reported herein have implications for future studies focused on discovering biomarkers to predict, monitor, and diagnose obstetrical diseases.
Collapse
Affiliation(s)
- Gaurav Bhatti
- Perinatology Research Branch, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI, USA.
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.
- Detroit Medical Center, Detroit, MI, USA.
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Eunjung Jung
- Perinatology Research Branch, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Francesca Gotsch
- Perinatology Research Branch, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Office of Women's Health, Integrative Biosciences Center, Wayne State University, Detroit, MI, USA
| | - Roger Pique-Regi
- Perinatology Research Branch, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Percy Pacora
- Perinatology Research Branch, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, The University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Chaur-Dong Hsu
- Perinatology Research Branch, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Obstetrics & Gynecology, University of Arizona College of Medicine -Tucson, Tucson, AZ, USA
| | - Mahendra Kavdia
- Department of Biomedical Engineering, Wayne State University College of Engineering, Detroit, MI, USA
| | - Adi L Tarca
- Perinatology Research Branch, US Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Detroit, MI, USA.
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA.
| |
Collapse
|