1
|
Mwale PF, Hsieh CT, Yen TL, Jan JS, Taliyan R, Yang CH, Yang WB. Chitinase-3-like-1: a multifaceted player in neuroinflammation and degenerative pathologies with therapeutic implications. Mol Neurodegener 2025; 20:7. [PMID: 39827337 PMCID: PMC11742494 DOI: 10.1186/s13024-025-00801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
Chitinase-3-like-1 (CHI3L1) is an evolutionarily conserved protein involved in key biological processes, including tissue remodeling, angiogenesis, and neuroinflammation. It has emerged as a significant player in various neurodegenerative diseases and brain disorders. Elevated CHI3L1 levels have been observed in neurological conditions such as traumatic brain injury (TBI), Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), Creutzfeldt-Jakob disease (CJD), multiple sclerosis (MS), Neuromyelitis optica (NMO), HIV-associated dementia (HAD), Cerebral ischemic stroke (CIS), and brain tumors. This review explores the role of CHI3L1 in the pathogenesis of these disorders, with a focus on its contributions to neuroinflammation, immune cell infiltration, and neuronal degeneration. As a key regulator of neuroinflammation, CHI3L1 modulates microglia and astrocyte activity, driving the release of proinflammatory cytokines that exacerbate disease progression. In addition to its role in disease pathology, CHI3L1 has emerged as a promising biomarker for the diagnosis and monitoring of brain disorders. Elevated cerebrospinal fluid (CSF) levels of CHI3L1 have been linked to disease severity and cognitive decline, particularly in AD and MS, highlighting its potential for clinical diagnostics. Furthermore, therapeutic strategies targeting CHI3L1, such as small-molecule inhibitors and neutralizing antibodies, have shown promise in preclinical studies, demonstrating reduced neuroinflammation, amyloid plaque accumulation, and improved neuronal survival. Despite its therapeutic potential, challenges remain in developing selective and safe CHI3L1-targeted therapies, particularly in ensuring effective delivery across the blood-brain barrier and mitigating off-target effects. This review addresses the complexities of targeting CHI3L1, highlights its potential in precision medicine, and outlines future research directions aimed at unlocking its full therapeutic potential in treating neurodegenerative diseases and brain pathologies.
Collapse
Affiliation(s)
- Pharaoh Fellow Mwale
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei, 110, Taiwan
| | - Cheng-Ta Hsieh
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei, 110, Taiwan
- Division of Neurosurgery, Department of Surgery, Cathay General Hospital, Taipei City, 106438, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, 300044, Taiwan
- Department of Medicine, School of Medicine, Fu Jen Catholic University, New Taipei City, 24205, Taiwan
| | - Ting-Lin Yen
- Department of Medical Research, Cathay General Hospital, Taipei, 22174, Taiwan
| | - Jing-Shiun Jan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei, 110, Taiwan
| | - Rajeev Taliyan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani, Rajasthan, India
| | - Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei, 110, Taiwan.
- Research Center for Neuroscience, Taipei Medical University, Taipei, Taiwan.
| | - Wen-Bin Yang
- Research Center for Neuroscience, Taipei Medical University, Taipei, Taiwan.
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
2
|
Kempuraj D, Dourvetakis KD, Cohen J, Valladares DS, Joshi RS, Kothuru SP, Anderson T, Chinnappan B, Cheema AK, Klimas NG, Theoharides TC. Neurovascular unit, neuroinflammation and neurodegeneration markers in brain disorders. Front Cell Neurosci 2024; 18:1491952. [PMID: 39526043 PMCID: PMC11544127 DOI: 10.3389/fncel.2024.1491952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Neurovascular unit (NVU) inflammation via activation of glial cells and neuronal damage plays a critical role in neurodegenerative diseases. Though the exact mechanism of disease pathogenesis is not understood, certain biomarkers provide valuable insight into the disease pathogenesis, severity, progression and therapeutic efficacy. These markers can be used to assess pathophysiological status of brain cells including neurons, astrocytes, microglia, oligodendrocytes, specialized microvascular endothelial cells, pericytes, NVU, and blood-brain barrier (BBB) disruption. Damage or derangements in tight junction (TJ), adherens junction (AdJ), and gap junction (GJ) components of the BBB lead to increased permeability and neuroinflammation in various brain disorders including neurodegenerative disorders. Thus, neuroinflammatory markers can be evaluated in blood, cerebrospinal fluid (CSF), or brain tissues to determine neurological disease severity, progression, and therapeutic responsiveness. Chronic inflammation is common in age-related neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD), and dementia. Neurotrauma/traumatic brain injury (TBI) also leads to acute and chronic neuroinflammatory responses. The expression of some markers may also be altered many years or even decades before the onset of neurodegenerative disorders. In this review, we discuss markers of neuroinflammation, and neurodegeneration associated with acute and chronic brain disorders, especially those associated with neurovascular pathologies. These biomarkers can be evaluated in CSF, or brain tissues. Neurofilament light (NfL), ubiquitin C-terminal hydrolase-L1 (UCHL1), glial fibrillary acidic protein (GFAP), Ionized calcium-binding adaptor molecule 1 (Iba-1), transmembrane protein 119 (TMEM119), aquaporin, endothelin-1, and platelet-derived growth factor receptor beta (PDGFRβ) are some important neuroinflammatory markers. Recent BBB-on-a-chip modeling offers promising potential for providing an in-depth understanding of brain disorders and neurotherapeutics. Integration of these markers in clinical practice could potentially enhance early diagnosis, monitor disease progression, and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Kirk D. Dourvetakis
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Jessica Cohen
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Daniel Seth Valladares
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Rhitik Samir Joshi
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Sai Puneeth Kothuru
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
- College of Psychology, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Tristin Anderson
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Baskaran Chinnappan
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Amanpreet K. Cheema
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
| | - Nancy G. Klimas
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
- Miami VA Geriatric Research Education and Clinical Center (GRECC), Miami Veterans Affairs Healthcare System, Miami, FL, United States
| | - Theoharis C. Theoharides
- Dr. Kiran C. Patel College of Osteopathic Medicine, Institute for Neuro-Immune Medicine, Nova Southeastern University, Ft. Lauderdale, FL, United States
- Department of Immunology, Tufts, University School of Medicine, Boston, MA, United States
| |
Collapse
|
3
|
Kim JH, Park SH, Han J, Ko PW, Kwon D, Suk K. Gliome database: a comprehensive web-based tool to access and analyze glia secretome data. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2020:5879255. [PMID: 32743661 PMCID: PMC7396318 DOI: 10.1093/database/baaa057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/12/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022]
Abstract
Glial cells are phenotypically heterogeneous non-neuronal components of the central and peripheral nervous systems. These cells are endowed with diverse functions and molecular machineries to detect and regulate neuronal or their own activities by various secreted mediators, such as proteinaceous factors. In particular, glia-secreted proteins form a basis of a complex network of glia-neuron or glia-glia interactions in health and diseases. In recent years, the analysis and profiling of glial secretomes have raised new expectations for the diagnosis and treatment of neurological disorders due to the vital role of glia in numerous physiological or pathological processes of the nervous system. However, there is no online database of glia-secreted proteins available to facilitate glial research. Here, we developed a user-friendly 'Gliome' database (available at www.gliome.org), a web-based tool to access and analyze glia-secreted proteins. The database provides a vast collection of information on 3293 proteins that are released from glia of multiple species and have been reported to have differential functions under diverse experimental conditions. It contains a web-based interface with the following four key features regarding glia-secreted proteins: (i) fundamental information, such as signal peptide, SecretomeP value, functions and Gene Ontology category; (ii) differential expression patterns under distinct experimental conditions; (iii) disease association; and (iv) interacting proteins. In conclusion, the Gliome database is a comprehensive web-based tool to access and analyze glia-secretome data obtained from diverse experimental settings, whereby it may facilitate the integration of bioinformatics into glial research.
Collapse
Affiliation(s)
- Jong-Heon Kim
- Brain Science and Engineering Institute, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Su-Hyeong Park
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea.,D&P BIOTECH, 807 Hoguk-ro, Buk-gu, Daegu, 41404, Republic of Korea
| | - Jin Han
- Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Pan-Woo Ko
- Department of Neurology, Kyungpook National University Chilgok Hospital, 807 Hoguk-ro, Buk-gu, Daegu, 41404, Republic of Korea
| | - Dongseop Kwon
- School of Software Convergence, Myongji University, 34 Geobukgol-ro, Seodaemun-gu, Seoul, 03674, Republic of Korea
| | - Kyoungho Suk
- Brain Science and Engineering Institute, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea.,Department of Pharmacology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| |
Collapse
|
4
|
Salikhova D, Bukharova T, Cherkashova E, Namestnikova D, Leonov G, Nikitina M, Gubskiy I, Akopyan G, Elchaninov A, Midiber K, Bulatenco N, Mokrousova V, Makarov A, Yarygin K, Chekhonin V, Mikhaleva L, Fatkhudinov T, Goldshtein D. Therapeutic Effects of hiPSC-Derived Glial and Neuronal Progenitor Cells-Conditioned Medium in Experimental Ischemic Stroke in Rats. Int J Mol Sci 2021; 22:4694. [PMID: 33946667 PMCID: PMC8125106 DOI: 10.3390/ijms22094694] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/12/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Transplantation of various types of stem cells as a possible therapy for stroke has been tested for years, and the results are promising. Recent investigations have shown that the administration of the conditioned media obtained after stem cell cultivation can also be effective in the therapy of the central nervous system pathology (hypothesis of their paracrine action). The aim of this study was to evaluate the therapeutic effects of the conditioned medium of hiPSC-derived glial and neuronal progenitor cells in the rat middle cerebral artery occlusion model of the ischemic stroke. Secretory activity of the cultured neuronal and glial progenitor cells was evaluated by proteomic and immunosorbent-based approaches. Therapeutic effects were assessed by overall survival, neurologic deficit and infarct volume dynamics, as well as by the end-point values of the apoptosis- and inflammation-related gene expression levels, the extent of microglia/macrophage infiltration and the numbers of formed blood vessels in the affected area of the brain. As a result, 31% of the protein species discovered in glial progenitor cells-conditioned medium and 45% in neuronal progenitor cells-conditioned medium were cell type specific. The glial progenitor cell-conditioned media showed a higher content of neurotrophins (BDNF, GDNF, CNTF and NGF). We showed that intra-arterial administration of glial progenitor cells-conditioned medium promoted a faster decrease in neurological deficit compared to the control group, reduced microglia/macrophage infiltration, reduced expression of pro-apoptotic gene Bax and pro-inflammatory cytokine gene Tnf, increased expression of anti-inflammatory cytokine genes (Il4, Il10, Il13) and promoted the formation of blood vessels within the damaged area. None of these effects were exerted by the neuronal progenitor cell-conditioned media. The results indicate pronounced cytoprotective, anti-inflammatory and angiogenic properties of soluble factors secreted by glial progenitor cells.
Collapse
Affiliation(s)
- Diana Salikhova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (T.B.); (G.L.); (N.B.); (V.M.); (D.G.)
- Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (A.E.); (K.M.); (L.M.); (T.F.)
| | - Tatiana Bukharova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (T.B.); (G.L.); (N.B.); (V.M.); (D.G.)
| | - Elvira Cherkashova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (E.C.); (D.N.); (I.G.); (A.M.); (V.C.)
- Radiology and Clinical Physiology Scientific Research Center, Federal State Budgetary Institution “Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency”, 117997 Moscow, Russia;
| | - Daria Namestnikova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (E.C.); (D.N.); (I.G.); (A.M.); (V.C.)
- Radiology and Clinical Physiology Scientific Research Center, Federal State Budgetary Institution “Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency”, 117997 Moscow, Russia;
| | - Georgy Leonov
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (T.B.); (G.L.); (N.B.); (V.M.); (D.G.)
| | - Maria Nikitina
- Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (A.E.); (K.M.); (L.M.); (T.F.)
| | - Ilya Gubskiy
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (E.C.); (D.N.); (I.G.); (A.M.); (V.C.)
- Radiology and Clinical Physiology Scientific Research Center, Federal State Budgetary Institution “Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency”, 117997 Moscow, Russia;
| | - Gevorg Akopyan
- Radiology and Clinical Physiology Scientific Research Center, Federal State Budgetary Institution “Federal Center of Brain Research and Neurotechnologies of the Federal Medical Biological Agency”, 117997 Moscow, Russia;
| | - Andrey Elchaninov
- Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (A.E.); (K.M.); (L.M.); (T.F.)
| | - Konstantin Midiber
- Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (A.E.); (K.M.); (L.M.); (T.F.)
| | - Natalia Bulatenco
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (T.B.); (G.L.); (N.B.); (V.M.); (D.G.)
| | - Victoria Mokrousova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (T.B.); (G.L.); (N.B.); (V.M.); (D.G.)
| | - Andrey Makarov
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (E.C.); (D.N.); (I.G.); (A.M.); (V.C.)
| | - Konstantin Yarygin
- Institute of Biomedical Chemistry, 119121 Moscow, Russia;
- Russian Medical Academy of Continuous Professional Education, 125993 Moscow, Russia
| | - Vladimir Chekhonin
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (E.C.); (D.N.); (I.G.); (A.M.); (V.C.)
| | - Liudmila Mikhaleva
- Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (A.E.); (K.M.); (L.M.); (T.F.)
| | - Timur Fatkhudinov
- Research Institute of Human Morphology, 117418 Moscow, Russia; (M.N.); (A.E.); (K.M.); (L.M.); (T.F.)
- Department of Histology, Cytology and Embryology, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| | - Dmitry Goldshtein
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (T.B.); (G.L.); (N.B.); (V.M.); (D.G.)
- Department of Histology, Cytology and Embryology, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| |
Collapse
|
5
|
Analysis of Astroglial Secretomic Profile in the Mecp2-Deficient Male Mouse Model of Rett Syndrome. Int J Mol Sci 2021; 22:ijms22094316. [PMID: 33919253 PMCID: PMC8122273 DOI: 10.3390/ijms22094316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 02/08/2023] Open
Abstract
Mutations in the X-linked MECP2 gene are responsible for Rett syndrome (RTT), a severe neurological disorder. MECP2 is a transcriptional modulator that finely regulates the expression of many genes, specifically in the central nervous system. Several studies have functionally linked the loss of MECP2 in astrocytes to the appearance and progression of the RTT phenotype in a non-cell autonomous manner and mechanisms are still unknown. Here, we used primary astroglial cells from Mecp2-deficient (KO) pups to identify deregulated secreted proteins. Using a differential quantitative proteomic analysis, twenty-nine proteins have been identified and four were confirmed by Western blotting with new samples as significantly deregulated. To further verify the functional relevance of these proteins in RTT, we tested their effects on the dendritic morphology of primary cortical neurons from Mecp2 KO mice that are known to display shorter dendritic processes. Using Sholl analysis, we found that incubation with Lcn2 or Lgals3 for 48 h was able to significantly increase the dendritic arborization of Mecp2 KO neurons. To our knowledge, this study, through secretomic analysis, is the first to identify astroglial secreted proteins involved in the neuronal RTT phenotype in vitro, which could open new therapeutic avenues for the treatment of Rett syndrome.
Collapse
|