1
|
Hao YJ, Chang LW, Yang CY, Lo LC, Lin CP, Jian YW, Jiang JK, Tseng FG. The rare circulating tumor microemboli as a biomarker contributes to predicting early colorectal cancer recurrences after medical treatment. Transl Res 2024; 263:1-14. [PMID: 37558203 DOI: 10.1016/j.trsl.2023.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/03/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Early prognosis of cancer recurrence remains difficult partially due to insufficient and ineffective screening biomarkers or regimes. This study evaluated the rare circulating tumor microemboli (CTM) from liquid biopsy individually and together with circulating tumor cells (CTCs) and serum CEA/CA19-9 in a panel, on early prediction of colorectal cancer (CRC) recurrence. Stained CTCs/CTM were detected by a microfluidic chip-based automatic rare-cell imaging platform. ROC, AUC, Kaplan-Meier survival, and Cox proportional hazard models regarding 4 selected biomarkers were analyzed. The relative risk, odds ratio, predictive accuracy, and positive/negative predictive value of biomarkers individually and in combination, to predict CRC recurrence were assessed and preliminarily validated. The EpCAM+Hochest+CD45- CTCs/CTM could be found in all cancer stages, where more recurrences were observed in late-stage cases. Significant correlations between CTCs/CTM with metastatic stages and clinical treatment were illustrated. CA19-9 and CTM could be seen as independent risk factors in patient survivals, while stratified patients by grouped biomarkers on the Kaplan-Meier analyses presented more significant differences in predicting CRC recurrences. By monitoring the panel of selected biomarkers, disease progressions of 4 CRC patients during follow-up visits after first treatments within 3 years were predicted successfully. This study unveiled the value of rare CTM on clinical studies and a panel of selected biomarkers on predicting CRC recurrences in patients at the early time after medical treatment, in which the CTM and serum CA19-9 could be applied in clinical surveillance and CRC management to improve the accuracy.
Collapse
Affiliation(s)
- Yun-Jie Hao
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Lu-Wey Chang
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Yung Yang
- Department of Teaching and Research, Taipei City Hospital, Taipei, Taiwan; Commission for General Education, National United University, Miaoli, Taiwan; General Education Center, University of Taipei, Taipei, Taiwan
| | - Liang-Chuan Lo
- National Genomics Center for Clinical and Biotechnological Applications, Cancer and Immunology Research Center, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Chien-Ping Lin
- Department of Surgery, Division of Colorectal Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yuan-Wei Jian
- Department of Surgery, Division of Colorectal Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jeng-Kai Jiang
- Department of Surgery, Division of Colorectal Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan; Department of Chemistry, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing-Hua University, Hsinchu, Taiwan; Research Center for Applied Sciences, Taipei, Taiwan.
| |
Collapse
|
2
|
Kurkowiak M, Grasso G, Faktor J, Scheiblecker L, Winniczuk M, Mayordomo MY, O'Neill JR, Oster B, Vojtesek B, Al-Saadi A, Marek-Trzonkowska N, Hupp TR. An integrated DNA and RNA variant detector identifies a highly conserved three base exon in the MAP4K5 kinase locus. RNA Biol 2021; 18:2556-2575. [PMID: 34190025 PMCID: PMC8632122 DOI: 10.1080/15476286.2021.1932345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
RNA variants that emerge from editing and alternative splicing form important regulatory stages in protein signalling. In this report, we apply an integrated DNA and RNA variant detection workbench to define the range of RNA variants that deviate from the reference genome in a human melanoma cell model. The RNA variants can be grouped into (i) classic ADAR-like or APOBEC-like RNA editing events and (ii) multiple-nucleotide variants (MNVs) including three and six base pair in-frame non-canonical unmapped exons. We focus on validating representative genes of these classes. First, clustered non-synonymous RNA edits (A-I) in the CDK13 gene were validated by Sanger sequencing to confirm the integrity of the RNA variant detection workbench. Second, a highly conserved RNA variant in the MAP4K5 gene was detected that results most likely from the splicing of a non-canonical three-base exon. The two RNA variants produced from the MAP4K5 locus deviate from the genomic reference sequence and produce V569E or V569del isoform variants. Low doses of splicing inhibitors demonstrated that the MAP4K5-V569E variant emerges from an SF3B1-dependent splicing event. Mass spectrometry of the recombinant SBP-tagged MAP4K5V569E and MAP4K5V569del proteins pull-downs in transfected cell systems was used to identify the protein-protein interactions of these two MAP4K5 isoforms and propose possible functions. Together these data highlight the utility of this integrated DNA and RNA variant detection platform to detect RNA variants in cancer cells and support future analysis of RNA variant detection in cancer tissue.
Collapse
Affiliation(s)
- Małgorzata Kurkowiak
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-822 Gdańsk, Poland
| | - Giuseppa Grasso
- University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research Centre, Edinburgh, Scotland, UK
| | - Jakub Faktor
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-822 Gdańsk, Poland.,Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Lisa Scheiblecker
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Małgorzata Winniczuk
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-822 Gdańsk, Poland
| | - Marcos Yebenes Mayordomo
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-822 Gdańsk, Poland.,University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research Centre, Edinburgh, Scotland, UK
| | - J Robert O'Neill
- Cambridge Oesophagogastric Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Bodil Oster
- QIAGEN Aarhus, Silkeborgvej 2, 8000 Aarhus, Denmark
| | - Borek Vojtesek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Ali Al-Saadi
- University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research Centre, Edinburgh, Scotland, UK
| | - Natalia Marek-Trzonkowska
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-822 Gdańsk, Poland.,Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Ted R Hupp
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdańsk, 80-822 Gdańsk, Poland.,University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research Centre, Edinburgh, Scotland, UK
| |
Collapse
|