1
|
Stadlhofer R, Moritz M, Fuh MM, Heeren J, Zech H, Clauditz TS, Schlüter H, Betz CS, Eggert D, Böttcher A, Hahn J. Lipidome Analysis of Oropharyngeal Tumor Tissues Using Nanosecond Infrared Laser (NIRL) Tissue Sampling and Subsequent Mass Spectrometry. Int J Mol Sci 2023; 24:ijms24097820. [PMID: 37175533 PMCID: PMC10178251 DOI: 10.3390/ijms24097820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/16/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Ultrashort pulse infrared lasers can simultaneously sample and homogenize biological tissue using desorption by impulsive vibrational excitation (DIVE). With growing attention on alterations in lipid metabolism in malignant disease, mass spectrometry (MS)-based lipidomic analysis has become an emerging topic in cancer research. In this pilot study, we investigated the feasibility of tissue sampling with a nanosecond infrared laser (NIRL) for the subsequent lipidomic analysis of oropharyngeal tissues, and its potential to discriminate oropharyngeal squamous cell carcinoma (OPSCC) from non-tumorous oropharyngeal tissue. Eleven fresh frozen oropharyngeal tissue samples were ablated. The produced aerosols were collected by a glass fiber filter, and the lipidomes were analyzed with mass spectrometry. Data was evaluated by principal component analysis and Welch's t-tests. Lipid profiles comprised 13 lipid classes and up to 755 lipid species. We found significant inter- and intrapatient alterations in lipid profiles for tumor and non-tumor samples (p-value < 0.05, two-fold difference). Thus, NIRL tissue sampling with consecutive MS lipidomic analysis is a feasible and promising approach for the differentiation of OPSCC and non-tumorous oropharyngeal tissue and may provide new insights into lipid composition alterations in OPSCC.
Collapse
Affiliation(s)
- Rupert Stadlhofer
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Manuela Moritz
- Section/Core Facility Mass Spectrometric Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Marceline M Fuh
- Department of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Jörg Heeren
- Department of Biochemistry and Molecular Cell Biology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Henrike Zech
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Till S Clauditz
- Department of Pathology, Diagnostic Center, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Hartmut Schlüter
- Section/Core Facility Mass Spectrometric Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Christian S Betz
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Dennis Eggert
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Arne Böttcher
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Jan Hahn
- Section/Core Facility Mass Spectrometric Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| |
Collapse
|
2
|
Accurate determination for lipidomics based on LC-tandem-MS parameters modeling, prediction, and database: Monitoring the progression of hepatocellular carcinoma. J Pharm Biomed Anal 2023; 223:115126. [DOI: 10.1016/j.jpba.2022.115126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
3
|
Gonzalez-Riano C, Santos M, Díaz M, García-Beltran C, Lerin C, Barbas C, Ibáñez L, Sánchez-Infantes D. Birth Weight and Early Postnatal Outcomes: Association with the Cord Blood Lipidome. Nutrients 2022; 14:3760. [PMID: 36145136 PMCID: PMC9505183 DOI: 10.3390/nu14183760] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Being born small or large for gestational age (SGA and LGA, respectively), combined with suboptimal early postnatal outcomes, can entail future metabolic alterations. The exact mechanisms underlying such risks are not fully understood. Lipids are a highly diverse class of molecules that perform multiple structural and metabolic functions. Dysregulation of lipid metabolism underlies the onset and progression of many disorders leading to pathological states. The aim of this pilot study was to investigate the relationships between birth weight, early postnatal outcomes, and cord blood serum lipidomes. We performed a non-targeted lipidomics-based approach to ascertain differences in cord blood lipid species among SGA, LGA, and appropriate-for-GA (AGA) newborns. Moreover, we longitudinally assessed (at birth and at ages of 4 and 12 months) weight and length, body composition (DXA), and clinical parameters. We disclosed distinct cord blood lipidome patterns in SGA, LGA, and AGA newborns; target lipid species distinctly modulated in each SGA, AGA, and LGA individual were associated with parameters related to growth and glucose homeostasis. The distinct lipidome patterns observed in SGA, AGA, and LGA newborns may play a role in adipose tissue remodeling and future metabolic risks. Maternal dietary interventions may potentially provide long-term benefits for the metabolic health of the offspring.
Collapse
Affiliation(s)
- Carolina Gonzalez-Riano
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Marcelo Santos
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
| | - Marta Díaz
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Cristina García-Beltran
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carles Lerin
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain
| | - Lourdes Ibáñez
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, 08950 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - David Sánchez-Infantes
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), 28029 Madrid, Spain
- Department of Health Sciences, Campus Alcorcón, University Rey Juan Carlos (URJC), 28922 Madrid, Spain
| |
Collapse
|