1
|
Luk H, Levitt DE, Appell CR, Jiwan NC. Resistance exercise-induced circulating factors influence the damaged skeletal muscle proteome in a sex-dependent manner. Physiol Rep 2025; 13:e70291. [PMID: 40223391 PMCID: PMC11994862 DOI: 10.14814/phy2.70291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 04/15/2025] Open
Abstract
Muscle recovery after damage is mediated by circulating factors and intracellular signaling pathways. Our previous studies have demonstrated that resistance exercise (RE)-induced circulating factors elicited sex-differential responses in damaged muscle. However, the global effects of these circulating factors on damaged muscle are largely understudied. We examined the differential effects of RE-induced circulating factors and sex on the damaged muscle proteome. Damaged vastus lateralis muscle from 3 men and 3 women from a parent study were analyzed. Participants completed 2 identical bouts of unilateral eccentric knee extensions immediately followed by either upper body RE to induce circulating factors (EXE) or 20-min seated rest (CON). Muscle biopsies collected from the damaged leg at 24 h were used. 900 proteins were identified by LC-MS/MS analysis. Ingenuity Pathway Analysis was used to detect activation prediction using z-scores for functional and pathway analyses. In men, 79 proteins were downregulated and 15 were upregulated in EXE versus CON. These differentially expressed proteins were associated with immunological and inflammatory signaling pathways. Biological functions of the differentially expressed proteins in EXE vs. CON in men include inactivating acute inflammatory signaling, neutrophil extracellular trap signaling, ROS production, and activating IL-12 signaling. These results underline that RE-induced circulating factors have a sex-specific effect on the damaged muscle proteome, where immune signaling is altered in men but not women. Given that the immune response is critical for recovery from muscle damage, these results highlight the potential role of RE-induced circulating factors that could be essential in mediating muscle recovery.
Collapse
Affiliation(s)
- Hui‐Ying Luk
- Department of Kinesiology and Sport ManagementTexas Tech UniversityLubbockTexasUSA
| | - Danielle E. Levitt
- Department of Kinesiology and Sport ManagementTexas Tech UniversityLubbockTexasUSA
| | - Casey R. Appell
- Department of Kinesiology and Sport ManagementTexas Tech UniversityLubbockTexasUSA
| | - Nigel C. Jiwan
- Department of Kinesiology and Sport ManagementTexas Tech UniversityLubbockTexasUSA
| |
Collapse
|
2
|
Gillham SH, Cole PL, Viggars MR, Nolan AH, Close GL, Owens DJ. Comparative transcriptomics of broad-spectrum and synthetic cannabidiol treated C2C12 skeletal myotubes. Physiol Rep 2024; 12:e70059. [PMID: 39289171 PMCID: PMC11407902 DOI: 10.14814/phy2.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
Cannabidiol (CBD) is widely used in sports for recovery, pain management, and sleep improvement, yet its effects on muscle are not well understood. This study aimed to determine the transcriptional response of murine skeletal muscle myotubes to broad-spectrum CBD and synthetic CBD (sCBD). Differentiated C2C12 myotubes were treated with 10 μM CBD, sCBD, or vehicle control (DMSO) for 24 h before RNA extraction. Poly-A tail-enriched mRNA libraries were constructed and sequenced using 2 × 50 bp paired-end sequencing. CBD and sCBD treatment induced 4489 and 1979 differentially expressed genes (DEGs; p < 0.001, FDR step-up <0.05), respectively, with common upregulation of 857 genes and common downregulation of 648 genes. Common upregulated DEGs were associated with "response to unfolded protein," "cell redox homeostasis," "endoplasmic reticulum stress," "oxidative stress," and "cellular response to hypoxia." Common downregulated DEGs were linked to "sarcomere organization," "skeletal muscle tissue development," "regulation of muscle contraction," and "muscle contraction." CBD treatment induced unique DEGs compared to sCBD. The data indicate CBD may induce mild cellular stress, activating pathways associated with altered redox balance, unfolded protein response, and endoplasmic reticulum stress. We hypothesize that CBD interacts with muscle and may elicit a "mitohormetic" effect that warrants further investigation.
Collapse
Affiliation(s)
- Scott H. Gillham
- Research Institute of Sport and Exercise Science (RISES)Liverpool John Moores UniversityLiverpoolUK
| | - Paige L. Cole
- Research Institute of Sport and Exercise Science (RISES)Liverpool John Moores UniversityLiverpoolUK
| | - Mark R. Viggars
- Department of Physiology and AgingUniversity of FloridaGainesvilleFloridaUSA
| | - Andy H. Nolan
- Centre for Tumour Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Graeme L. Close
- Research Institute of Sport and Exercise Science (RISES)Liverpool John Moores UniversityLiverpoolUK
| | - Daniel J. Owens
- Research Institute of Sport and Exercise Science (RISES)Liverpool John Moores UniversityLiverpoolUK
| |
Collapse
|
3
|
Dowling P, Gargan S, Zweyer M, Henry M, Meleady P, Swandulla D, Ohlendieck K. Proteomic reference map for sarcopenia research: mass spectrometric identification of key muscle proteins of organelles, cellular signaling, bioenergetic metabolism and molecular chaperoning. Eur J Transl Myol 2024; 34:12565. [PMID: 38787292 PMCID: PMC11264233 DOI: 10.4081/ejtm.2024.12565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 05/25/2024] Open
Abstract
During the natural aging process, frailty is often associated with abnormal muscular performance. Although inter-individual differences exit, in most elderly the tissue mass and physiological functionality of voluntary muscles drastically decreases. In order to study age-related contractile decline, animal model research is of central importance in the field of biogerontology. Here we have analyzed wild type mouse muscle to establish a proteomic map of crude tissue extracts. Proteomics is an advanced and large-scale biochemical method that attempts to identify all accessible proteins in a given biological sample. It is a technology-driven approach that uses mass spectrometry for the characterization of individual protein species. Total protein extracts were used in this study in order to minimize the potential introduction of artefacts due to excess subcellular fractionation procedures. In this report, the proteomic survey of aged muscles has focused on organellar marker proteins, as well as proteins that are involved in cellular signaling, the regulation of ion homeostasis, bioenergetic metabolism and molecular chaperoning. Hence, this study has establish a proteomic reference map of a highly suitable model system for future aging research.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| | - Margit Zweyer
- Department of Neonatology and Paediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases, Bonn.
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin.
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin.
| | - Dieter Swandulla
- Institute of Physiology, Medical Faculty, University of Bonn, Bonn.
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| |
Collapse
|
4
|
Dowling P, Gargan S, Zweyer M, Henry M, Meleady P, Swandulla D, Ohlendieck K. Proteomic reference map for sarcopenia research: mass spectrometric identification of key muscle proteins located in the sarcomere, cytoskeleton and the extracellular matrix. Eur J Transl Myol 2024; 34:12564. [PMID: 38787300 PMCID: PMC11264229 DOI: 10.4081/ejtm.2024.12564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 05/25/2024] Open
Abstract
Sarcopenia of old age is characterized by the progressive loss of skeletal muscle mass and concomitant decrease in contractile strength. Age-related skeletal muscle dysfunctions play a key pathophysiological role in the frailty syndrome and can result in a drastically diminished quality of life in the elderly. Here we have used mass spectrometric analysis of the mouse hindlimb musculature to establish the muscle protein constellation at advanced age of a widely used sarcopenic animal model. Proteomic results were further analyzed by systems bioinformatics of voluntary muscles. In this report, the proteomic survey of aged muscles has focused on the expression patterns of proteins involved in the contraction-relaxation cycle, membrane cytoskeletal maintenance and the formation of the extracellular matrix. This includes proteomic markers of the fast versus slow phenotypes of myosin-containing thick filaments and actin-containing thin filaments, as well as proteins that are associated with the non-sarcomeric cytoskeleton and various matrisomal layers. The bioanalytical usefulness of the newly established reference map was demonstrated by the comparative screening of normal versus dystrophic muscles of old age, and findings were verified by immunoblot analysis.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| | - Margit Zweyer
- Department of Neonatology and Paediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany; German Center for Neurodegenerative Diseases, Bonn.
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin.
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin.
| | - Dieter Swandulla
- Institute of Physiology, Medical Faculty, University of Bonn, Bonn.
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare.
| |
Collapse
|
5
|
Dowling P, Trollet C, Negroni E, Swandulla D, Ohlendieck K. How Can Proteomics Help to Elucidate the Pathophysiological Crosstalk in Muscular Dystrophy and Associated Multi-System Dysfunction? Proteomes 2024; 12:4. [PMID: 38250815 PMCID: PMC10801633 DOI: 10.3390/proteomes12010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
This perspective article is concerned with the question of how proteomics, which is a core technique of systems biology that is deeply embedded in the multi-omics field of modern bioresearch, can help us better understand the molecular pathogenesis of complex diseases. As an illustrative example of a monogenetic disorder that primarily affects the neuromuscular system but is characterized by a plethora of multi-system pathophysiological alterations, the muscle-wasting disease Duchenne muscular dystrophy was examined. Recent achievements in the field of dystrophinopathy research are described with special reference to the proteome-wide complexity of neuromuscular changes and body-wide alterations/adaptations. Based on a description of the current applications of top-down versus bottom-up proteomic approaches and their technical challenges, future systems biological approaches are outlined. The envisaged holistic and integromic bioanalysis would encompass the integration of diverse omics-type studies including inter- and intra-proteomics as the core disciplines for systematic protein evaluations, with sophisticated biomolecular analyses, including physiology, molecular biology, biochemistry and histochemistry. Integrated proteomic findings promise to be instrumental in improving our detailed knowledge of pathogenic mechanisms and multi-system dysfunction, widening the available biomarker signature of dystrophinopathy for improved diagnostic/prognostic procedures, and advancing the identification of novel therapeutic targets to treat Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Capucine Trollet
- Center for Research in Myology U974, Sorbonne Université, INSERM, Myology Institute, 75013 Paris, France; (C.T.); (E.N.)
| | - Elisa Negroni
- Center for Research in Myology U974, Sorbonne Université, INSERM, Myology Institute, 75013 Paris, France; (C.T.); (E.N.)
| | - Dieter Swandulla
- Institute of Physiology, Faculty of Medicine, University of Bonn, D53115 Bonn, Germany;
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
6
|
Dowling P, Swandulla D, Ohlendieck K. Mass Spectrometry-Based Proteomic Technology and Its Application to Study Skeletal Muscle Cell Biology. Cells 2023; 12:2560. [PMID: 37947638 PMCID: PMC10649384 DOI: 10.3390/cells12212560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Voluntary striated muscles are characterized by a highly complex and dynamic proteome that efficiently adapts to changed physiological demands or alters considerably during pathophysiological dysfunction. The skeletal muscle proteome has been extensively studied in relation to myogenesis, fiber type specification, muscle transitions, the effects of physical exercise, disuse atrophy, neuromuscular disorders, muscle co-morbidities and sarcopenia of old age. Since muscle tissue accounts for approximately 40% of body mass in humans, alterations in the skeletal muscle proteome have considerable influence on whole-body physiology. This review outlines the main bioanalytical avenues taken in the proteomic characterization of skeletal muscle tissues, including top-down proteomics focusing on the characterization of intact proteoforms and their post-translational modifications, bottom-up proteomics, which is a peptide-centric method concerned with the large-scale detection of proteins in complex mixtures, and subproteomics that examines the protein composition of distinct subcellular fractions. Mass spectrometric studies over the last two decades have decisively improved our general cell biological understanding of protein diversity and the heterogeneous composition of individual myofibers in skeletal muscles. This detailed proteomic knowledge can now be integrated with findings from other omics-type methodologies to establish a systems biological view of skeletal muscle function.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, Faculty of Medicine, University of Bonn, D53115 Bonn, Germany;
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
7
|
Guida S, Vitale J, Gianola S, Castellini G, Swinnen E, Beckwée D, Gelfi C, Torretta E, Mangiavini L. Effects of tele-prehabilitation on clinical and muscular recovery in patients awaiting knee replacement: protocol of a randomised controlled trial. BMJ Open 2023; 13:e073163. [PMID: 37793919 PMCID: PMC10551960 DOI: 10.1136/bmjopen-2023-073163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND The increasing prevalence of knee osteoarthritis and total knee arthroplasty (TKA) impose a significant socioeconomic burden in developed and developing countries. Prehabilitation (rehabilitation in the weeks immediately before surgery) may be crucial to prepare patients for surgery improving outcomes and reducing assistance costs. Moreover, considering the progress of telemedicine, candidates for TKA could potentially benefit from a tele-prehabilitation programme. We aim to evaluate the effects of a home-based tele-prehabilitation program for patients waiting for total knee replacement. METHODS AND ANALYSIS Forty-eight male patients, aged 65-80, on a waiting list for TKA will be recruited and randomly assigned to the tele-prehabilitation intervention or control groups. Both groups will undergo the same 6-week exercise program (five sessions/week) and the same educational session (one per week). The tele-prehabilitation group will perform asynchronous sessions using a tablet, two accelerometers and a balance board (Khymeia, Padova, Italy), while the control group will use a booklet. The Western Ontario and McMaster Universities Osteoarthritis Index Questionnaire, at the end of the prehabilitation, will be the primary outcome. Secondary outcomes will include self-reported outcomes, performance tests and change in expressions of blood and muscle biomarkers. Ten healthy subjects, aged 18-30, will be also recruited for muscle and blood samples collection. They will not undergo any intervention and their data will be used as benchmarks for the intervention and control groups' analyses. ETHICS AND DISSEMINATION This randomised controlled trial will be conducted in accordance with the ethical principles of the Declaration of Helsinki. This study has been approved by the Ethics Committee of Vita-Salute San Raffaele University (Milan, Italy. No. 50/INT/2022). The research results will be published in peer-reviewed publications. TRIAL REGISTRATION NUMBER NCT05668312.
Collapse
Affiliation(s)
- Stefania Guida
- Unit of Clinical Epidemiology, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
- Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jacopo Vitale
- Spine Center, Schulthess Klinik, Zurich, Switzerland
| | - Silvia Gianola
- Unit of Clinical Epidemiology, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - Greta Castellini
- Unit of Clinical Epidemiology, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - Eva Swinnen
- Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Brussels, Belgium
| | - David Beckwée
- Rehabilitation Research Deparment, Vrije Universiteit Brussel, Brussel, Belgium
- Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, Antwerpen, Belgium
| | - Cecilia Gelfi
- Laboratory of Proteomics and Lipidomics, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Enrica Torretta
- Laboratory of Proteomics and Lipidomics, IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| | - Laura Mangiavini
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
- IRCCS Galeazzi Orthopaedic Institute, Milan, Italy
| |
Collapse
|
8
|
Dowling P, Swandulla D, Ohlendieck K. Biochemical and proteomic insights into sarcoplasmic reticulum Ca 2+-ATPase complexes in skeletal muscles. Expert Rev Proteomics 2023; 20:125-142. [PMID: 37668143 DOI: 10.1080/14789450.2023.2255743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/07/2023] [Accepted: 08/14/2023] [Indexed: 09/06/2023]
Abstract
INTRODUCTION Skeletal muscles contain large numbers of high-molecular-mass protein complexes in elaborate membrane systems. Integral membrane proteins are involved in diverse cellular functions including the regulation of ion handling, membrane homeostasis, energy metabolism and force transmission. AREAS COVERED The proteomic profiling of membrane proteins and large protein assemblies in skeletal muscles are outlined in this article. This includes a critical overview of the main biochemical separation techniques and the mass spectrometric approaches taken to study membrane proteins. As an illustrative example of an analytically challenging large protein complex, the proteomic detection and characterization of the Ca2+-ATPase of the sarcoplasmic reticulum is discussed. The biological role of this large protein complex during normal muscle functioning, in the context of fiber type diversity and in relation to mechanisms of physiological adaptations and pathophysiological abnormalities is evaluated from a proteomics perspective. EXPERT OPINION Mass spectrometry-based muscle proteomics has decisively advanced the field of basic and applied myology. Although it is technically challenging to study membrane proteins, innovations in protein separation methodology in combination with sensitive mass spectrometry and improved systems bioinformatics has allowed the detailed proteomic detection and characterization of skeletal muscle membrane protein complexes, such as Ca2+-pump proteins of the sarcoplasmic reticulum.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth Kildare, Ireland
| |
Collapse
|
9
|
Schäfer JA, Sutandy FXR, Münch C. Omics-based approaches for the systematic profiling of mitochondrial biology. Mol Cell 2023; 83:911-926. [PMID: 36931258 DOI: 10.1016/j.molcel.2023.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 03/18/2023]
Abstract
Mitochondria are essential for cellular functions such as metabolism and apoptosis. They dynamically adapt to the changing environmental demands by adjusting their protein, nucleic acid, metabolite, and lipid contents. In addition, the mitochondrial components are modulated on different levels in response to changes, including abundance, activity, and interaction. A wide range of omics-based approaches has been developed to be able to explore mitochondrial adaptation and how mitochondrial function is compromised in disease contexts. Here, we provide an overview of the omics methods that allow us to systematically investigate the different aspects of mitochondrial biology. In addition, we show examples of how these methods have provided new biological insights. The emerging use of these toolboxes provides a more comprehensive understanding of the processes underlying mitochondrial function.
Collapse
Affiliation(s)
- Jasmin Adriana Schäfer
- Institute of Biochemistry II, Goethe University Frankfurt, Theodor-Stern-Kai 7, Haus 75, 60590 Frankfurt am Main, Germany
| | - F X Reymond Sutandy
- Institute of Biochemistry II, Goethe University Frankfurt, Theodor-Stern-Kai 7, Haus 75, 60590 Frankfurt am Main, Germany
| | - Christian Münch
- Institute of Biochemistry II, Goethe University Frankfurt, Theodor-Stern-Kai 7, Haus 75, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
10
|
Dowling P, Gargan S, Swandulla D, Ohlendieck K. Fiber-Type Shifting in Sarcopenia of Old Age: Proteomic Profiling of the Contractile Apparatus of Skeletal Muscles. Int J Mol Sci 2023; 24:2415. [PMID: 36768735 PMCID: PMC9916839 DOI: 10.3390/ijms24032415] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The progressive loss of skeletal muscle mass and concomitant reduction in contractile strength plays a central role in frailty syndrome. Age-related neuronal impairments are closely associated with sarcopenia in the elderly, which is characterized by severe muscular atrophy that can considerably lessen the overall quality of life at old age. Mass-spectrometry-based proteomic surveys of senescent human skeletal muscles, as well as animal models of sarcopenia, have decisively improved our understanding of the molecular and cellular consequences of muscular atrophy and associated fiber-type shifting during aging. This review outlines the mass spectrometric identification of proteome-wide changes in atrophying skeletal muscles, with a focus on contractile proteins as potential markers of changes in fiber-type distribution patterns. The observed trend of fast-to-slow transitions in individual human skeletal muscles during the aging process is most likely linked to a preferential susceptibility of fast-twitching muscle fibers to muscular atrophy. Studies with senescent animal models, including mostly aged rodent skeletal muscles, have confirmed fiber-type shifting. The proteomic analysis of fast versus slow isoforms of key contractile proteins, such as myosin heavy chains, myosin light chains, actins, troponins and tropomyosins, suggests them as suitable bioanalytical tools of fiber-type transitions during aging.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
11
|
Dowling P, Gargan S, Swandulla D, Ohlendieck K. Identification of Subproteomic Markers for Skeletal Muscle Profiling. Methods Mol Biol 2023; 2596:291-302. [PMID: 36378446 DOI: 10.1007/978-1-0716-2831-7_20] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The biochemical and cell biological profiling of contractile fiber types and subcellular structures plays a central role in basic and applied myology. Mass spectrometry-based proteomics presents an ideal approach for the systematic identification of proteomic and subproteomic markers. These representative components of fast versus slow muscle fibers and their subcellular fractions are highly useful for in-depth surveys of skeletal muscle adaptations to physiological challenges, as well as the improvement of diagnostic, prognostic, and therapy-monitoring methodologies in muscle pathology. This chapter outlines the identification of subproteomic markers for skeletal muscle profiling based on bottom-up and top-down approaches, including fluorescence two-dimensional difference gel electrophoresis (2D-DIGE).
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
12
|
Ageing Skeletal Muscle: The Ubiquitous Muscle Stem Cell. Subcell Biochem 2023; 102:365-377. [PMID: 36600140 DOI: 10.1007/978-3-031-21410-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In 1999, in a review by Beardsley, the potential of adult stem cells, in repair and regeneration was heralded (Beardsley Sci Am 281:30-31, 1999). Since then, the field of regenerative medicine has grown exponentially, with the capability of restoring or regenerating the function of damaged, diseased or aged human tissues being an underpinning motivation. If successful, stem cell therapies offer the potential to treat, for example degenerative diseases. In the subsequent 20 years, extensive progress has been made in the arena of adult stem cells (for a recent review see (Zakrzewski et al. Stem Cell Res Ther 10:68, 2019)). Prior to the growth of the adult stem cell research arena, much focus had been placed on the potential of embryonic stem cells (ESCs). The first research revealing the potential of these cells was published in 1981, when scientists reported the ability of cultured stem cells from murine embryos, to not only self-renew, but to also become all cells of the three germ layers of the developing embryo (Evans and Kaufman Nature 292:154-156, 1981), (Martin Proc Natl Acad Sci U S A 78:7634-7638, 1981). It took almost 20 years, following these discoveries, for this technology to translate to human ESCs, using donated human embryos. In 1998, Thomson et al. reported the creation of the first human embryonic cell line (Thomson et al. Science 282:1145-1147, 1998). However, research utilising human ESCs was hampered by ethical and religious constraints and indeed in 2001 George W. Bush restricted US research funding to human ESCs, which had already been banked. The contentious nature of this arena perhaps facilitated the use of and the research potential for adult stem cells. It is beyond the scope of this review to focus on ESCs, although their potential for enhancing our understanding of human development is huge (for a recent review see (Cyranoski Nature 555:428-430, 2018)). Rather, although ESCs and their epigenetic regulation will be introduced for background understanding, the focus will be on stem cells more generally, the role of epigenetics in stem cell fate, skeletal muscle, skeletal muscle stem cells, the impact of ageing on muscle wasting and the mechanisms underpinning loss, with a focus on epigenetic adaptation.
Collapse
|
13
|
El Assar M, Álvarez-Bustos A, Sosa P, Angulo J, Rodríguez-Mañas L. Effect of Physical Activity/Exercise on Oxidative Stress and Inflammation in Muscle and Vascular Aging. Int J Mol Sci 2022; 23:ijms23158713. [PMID: 35955849 PMCID: PMC9369066 DOI: 10.3390/ijms23158713] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022] Open
Abstract
Functional status is considered the main determinant of healthy aging. Impairment in skeletal muscle and the cardiovascular system, two interrelated systems, results in compromised functional status in aging. Increased oxidative stress and inflammation in older subjects constitute the background for skeletal muscle and cardiovascular system alterations. Aged skeletal muscle mass and strength impairment is related to anabolic resistance, mitochondrial dysfunction, increased oxidative stress and inflammation as well as a reduced antioxidant response and myokine profile. Arterial stiffness and endothelial function stand out as the main cardiovascular alterations related to aging, where increased systemic and vascular oxidative stress and inflammation play a key role. Physical activity and exercise training arise as modifiable determinants of functional outcomes in older persons. Exercise enhances antioxidant response, decreases age-related oxidative stress and pro-inflammatory signals, and promotes the activation of anabolic and mitochondrial biogenesis pathways in skeletal muscle. Additionally, exercise improves endothelial function and arterial stiffness by reducing inflammatory and oxidative damage signaling in vascular tissue together with an increase in antioxidant enzymes and nitric oxide availability, globally promoting functional performance and healthy aging. This review focuses on the role of oxidative stress and inflammation in aged musculoskeletal and vascular systems and how physical activity/exercise influences functional status in the elderly.
Collapse
Affiliation(s)
- Mariam El Assar
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, 28905 Getafe, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alejandro Álvarez-Bustos
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Patricia Sosa
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, 28905 Getafe, Spain
| | - Javier Angulo
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Servicio de Histología-Investigación, Unidad de Investigación Traslacional en Cardiología (IRYCIS-UFV), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Leocadio Rodríguez-Mañas
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Servicio de Geriatría, Hospital Universitario de Getafe, 28905 Getafe, Spain
- Correspondence: ; Tel.: +34-91-683-93-60 (ext. 6411)
| |
Collapse
|
14
|
Hartono FA, Martin-Arrowsmith PW, Peeters WM, Churchward-Venne TA. The Effects of Dietary Protein Supplementation on Acute Changes in Muscle Protein Synthesis and Longer-Term Changes in Muscle Mass, Strength, and Aerobic Capacity in Response to Concurrent Resistance and Endurance Exercise in Healthy Adults: A Systematic Review. Sports Med 2022; 52:1295-1328. [PMID: 35113389 DOI: 10.1007/s40279-021-01620-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Engaging in both resistance and endurance exercise within the same training program, termed 'concurrent exercise training,' is common practice in many athletic disciplines that require a combination of strength and endurance and is recommended by a number of organizations to improve muscular and cardiovascular health and reduce the risk of chronic metabolic disease. Dietary protein ingestion supports skeletal muscle remodeling after exercise by stimulating the synthesis of muscle proteins and can optimize resistance exercise-training mediated increases in skeletal muscle size and strength; however, the effects of protein supplementation on acute and longer-term adaptive responses to concurrent resistance and endurance exercise are unclear. OBJECTIVES The purpose of this systematic review is to evaluate the effects of dietary protein supplementation on acute changes in muscle protein synthesis and longer-term changes in muscle mass, strength, and aerobic capacity in responses to concurrent resistance and endurance exercise in healthy adults. METHODS A systematic search was conducted in five databases: Scopus, Embase, Medline, PubMed, and Web of Science. Acute and longer-term controlled trials involving concurrent exercise and protein supplementation in healthy adults (ages 18-65 years) were included in this systematic review. Main outcomes of interest were changes in skeletal muscle protein synthesis rates, muscle mass, muscle strength, and whole-body aerobic capacity (i.e., maximal/peak aerobic capacity [VO2max/peak]). The quality of studies was assessed using the National Institute of Health Quality Assessment for Controlled Intervention Studies. RESULTS Four acute studies including 84 trained young males and ten longer-term studies including 167 trained and 391 untrained participants fulfilled the eligibility criteria. All included acute studies demonstrated that protein ingestion enhanced myofibrillar protein synthesis rates, but not mitochondrial protein synthesis rates during post-exercise recovery after an acute bout of concurrent exercise. Of the included longer-term training studies, five out of nine reported that protein supplementation enhanced concurrent training-mediated increases in muscle mass, while five out of nine studies reported that protein supplementation enhanced concurrent training-mediated increases in muscle strength and/or power. In terms of aerobic adaptations, all six included studies reported no effect of protein supplementation on concurrent training-mediated increases in VO2max/peak. CONCLUSION Protein ingestion after an acute bout of concurrent exercise further increases myofibrillar, but not mitochondrial, protein synthesis rates during post-exercise recovery. There is some evidence that protein supplementation during longer-term training further enhances concurrent training-mediated increases in skeletal muscle mass and strength/power, but not whole-body aerobic capacity (i.e., VO2max/peak).
Collapse
Affiliation(s)
| | - Patrick W Martin-Arrowsmith
- Department of Kinesiology and Physical Education, McGill University, Currie Memorial Gymnasium A205, 475 Pine Avenue West, Montreal, QC, H2W 1S4, Canada
| | - Wouter M Peeters
- School of Biomedical, Nutritional, and Sports Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Tyler A Churchward-Venne
- Department of Kinesiology and Physical Education, McGill University, Currie Memorial Gymnasium A205, 475 Pine Avenue West, Montreal, QC, H2W 1S4, Canada.
- Division of Geriatric Medicine, McGill University, Montreal, QC, Canada.
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
15
|
Dowling P, Gargan S, Zweyer M, Sabir H, Swandulla D, Ohlendieck K. Proteomic profiling of carbonic anhydrase CA3 in skeletal muscle. Expert Rev Proteomics 2021; 18:1073-1086. [PMID: 34890519 DOI: 10.1080/14789450.2021.2017776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Carbonic anhydrase (CA) is a key enzyme that mediates the reversible hydration of carbon dioxide. Skeletal muscles contain high levels of the cytosolic isoform CA3. This enzyme has antioxidative function and plays a crucial role in the maintenance of intracellular pH homeostasis. AREAS COVERED Since elevated levels of serum CA3, often in combination with other muscle-specific proteins, are routinely used as a marker of general muscle damage, it was of interest to examine recent analyses of this enzyme carried out by modern proteomics. This review summarizes the mass spectrometry-based identification and evaluation of CA3 in normal, adapting, dystrophic, and aging skeletal muscle tissues. EXPERT OPINION The mass spectrometric characterization of CA3 confirmed this enzyme as a highly useful marker of both physiological and pathophysiological alterations in skeletal muscles. Cytosolic CA3 is clearly enriched in slow-twitching type I fibers, which makes it an ideal marker for studying fiber type shifting and muscle adaptations. Importantly, neuromuscular diseases feature distinct alterations in CA3 in skeletal muscle tissues versus biofluids, such as serum. Characteristic changes of CA3 in age-related muscle wasting and dystrophinopathy established this enzyme as a suitable biomarker candidate for differential diagnosis and monitoring of disease progression and therapeutic impact.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| | - Margit Zweyer
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - Hemmen Sabir
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Ireland
| |
Collapse
|
16
|
Fielding RA, Rivas D, Grosicki GJ, Ezzyat Y, Ceglia L, Price LL, Orhan C, Sahin K, Fowler K, White T, Durkee S, Kritsch K, Bellamine A. Effects of Low Doses of L-Carnitine Tartrate and Lipid Multi-Particulate Formulated Creatine Monohydrate on Muscle Protein Synthesis in Myoblasts and Bioavailability in Humans and Rodents. Nutrients 2021; 13:3985. [PMID: 34836240 PMCID: PMC8625796 DOI: 10.3390/nu13113985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022] Open
Abstract
The primary objective of this study was to investigate the potential synergy between low doses of L-carnitine tartrate and creatine monohydrate to induce muscle protein synthesis and anabolic pathway activation in primary human myoblasts. In addition, the effects of Lipid multi-particulates (LMP) formulation on creatine stability and bioavailability were assessed in rodents and healthy human subjects. When used individually, L-carnitine tartrate at 50 µM and creatine monohydrate at 0.5 µM did not affect myoblast protein synthesis and signaling. However, when combined, they led to a significant increase in protein synthesis. Increased AKT and RPS6 phosphorylation were observed with 50 µM L-carnitine tartrate 5 µM creatine in combination in primary human myoblasts. When Wistar rats were administered creatine with LMP formulation at either 21 or 51 mg/kg, bioavailability was increased by 27% based on the increase in the area under the curve (AUC) at a 51 mg/kg dose compared to without LMP formulation. Tmax and Cmax were unchanged. Finally, in human subjects, a combination of LMP formulated L-carnitine at 500 mg (from L-carnitine tartrate) with LMP formulated creatine at 100, 200, or 500 mg revealed a significant and dose-dependent increase in plasma creatine concentrations. Serum total L-carnitine levels rose in a similar manner in the three combinations. These results suggest that a combination of low doses of L-carnitine tartrate and creatine monohydrate may lead to a significant and synergistic enhancement of muscle protein synthesis and activation of anabolic signaling. In addition, the LMP formulation of creatine improved its bioavailability. L-carnitine at 500 mg and LMP-formulated creatine at 200 or 500 mg may be useful for future clinical trials to evaluate the effects on muscle protein synthesis.
Collapse
Affiliation(s)
- Roger A. Fielding
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center, Aging Tufts University, Boston, MA 02111, USA; (D.R.); (G.J.G.); (Y.E.)
| | - Donato Rivas
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center, Aging Tufts University, Boston, MA 02111, USA; (D.R.); (G.J.G.); (Y.E.)
| | - Gregory J. Grosicki
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center, Aging Tufts University, Boston, MA 02111, USA; (D.R.); (G.J.G.); (Y.E.)
- Biodynamics and Human Performance Center, Georgia Southern University, Armsrong Campus, Savannah, GA 31419, USA
| | - Yassine Ezzyat
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center, Aging Tufts University, Boston, MA 02111, USA; (D.R.); (G.J.G.); (Y.E.)
| | - Lisa Ceglia
- Division of Endocrinology, Tufts Medical Center, Boston, MA 02111, USA;
| | - Lori Lyn Price
- The Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA 02111, USA;
- Tufts Clinical and Translational Science Institute, Tufts University, Boston, MA 02111, USA
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey; (C.O.); (K.S.)
| | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey; (C.O.); (K.S.)
| | - Kelli Fowler
- R&D Innovation, Lonza Consumer Health, Morristown, NJ 07960, USA; (K.F.); (T.W.); (S.D.); (A.B.)
| | - Tyler White
- R&D Innovation, Lonza Consumer Health, Morristown, NJ 07960, USA; (K.F.); (T.W.); (S.D.); (A.B.)
| | - Shane Durkee
- R&D Innovation, Lonza Consumer Health, Morristown, NJ 07960, USA; (K.F.); (T.W.); (S.D.); (A.B.)
| | - Katja Kritsch
- R&D Lonza Specialty Ingredients, Alpharetta, GA 30004, USA;
| | - Aouatef Bellamine
- R&D Innovation, Lonza Consumer Health, Morristown, NJ 07960, USA; (K.F.); (T.W.); (S.D.); (A.B.)
| |
Collapse
|
17
|
Urinary Proteomics of Simulated Firefighting Tasks and Its Relation to Fitness Parameters. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010618. [PMID: 34682364 PMCID: PMC8536002 DOI: 10.3390/ijerph182010618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 12/02/2022]
Abstract
Firefighting rescues are high-hazard activities accompanied by uncertainty, urgency, and complexity. Knowledge of the metabolic characteristics during firefighting rescues is of great value. The purpose of this study was to explore the firefighting-induced physiological responses in greater depth. The urine samples of ten firefighters were collected before and after the simulated firefighting, and the proteins in urine samples were identified by the liquid chromatography–mass spectroscopy. Blood lactate and heart rate were measured. There were 360 proteins up-regulated and 265 proteins downregulated after this simulated firefighting. Changes in protein expression were significantly related to acute inflammatory responses, immune responses, complement activation, and oxidative stress. Beta-2-microglobulin (r = 0.76, p < 0.05) and von Willebrand factors (r = 0.81, p < 0.01) were positively correlated with heart rate during simulated firefighting, and carbonic anhydrase 1 (r = 0.67, p < 0.05) were positively correlated with blood lactate after simulated firefighting. These results illustrated that Beta-2-microglobulin, von Willebrand, and carbonic anhydrase 1 could be regarded as important indicators to evaluate exercise intensity for firefighters.
Collapse
|