1
|
Jahn KN. Clinical and investigational tools for monitoring noise-induced hyperacusis. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:553. [PMID: 35931527 PMCID: PMC9448410 DOI: 10.1121/10.0012684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Hyperacusis is a recognized perceptual consequence of acoustic overexposure that can lead to debilitating psychosocial effects. Despite the profound impact of hyperacusis on quality of life, clinicians and researchers lack objective biomarkers and standardized protocols for its assessment. Outcomes of conventional audiologic tests are highly variable in the hyperacusis population and do not adequately capture the multifaceted nature of the condition on an individual level. This presents challenges for the differential diagnosis of hyperacusis, its clinical surveillance, and evaluation of new treatment options. Multiple behavioral and objective assays are emerging as contenders for inclusion in hyperacusis assessment protocols but most still await rigorous validation. There remains a pressing need to develop tools to quantify common nonauditory symptoms, including annoyance, fear, and pain. This review describes the current literature on clinical and investigational tools that have been used to diagnose and monitor hyperacusis, as well as those that hold promise for inclusion in future trials.
Collapse
Affiliation(s)
- Kelly N Jahn
- Department of Speech, Language, and Hearing, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| |
Collapse
|
2
|
Schmidt FH, Mauermann M, Kollmeier B. Neural Representation of Loudness: Cortical Evoked Potentials in an Induced Loudness Reduction Experiment. Trends Hear 2020; 24:2331216519900595. [PMID: 31994456 PMCID: PMC6990611 DOI: 10.1177/2331216519900595] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Loudness context effects comprise differences in judgments of the loudness of a target stimulus depending on the presence of a preceding inducer tone. Interstimulus intervals (ISIs) between inducer tone and target tone of about 200 ms and above cause an induced loudness reduction (ILR) of the target tone. As the ILR increases, respectively, the perceived loudness of the target stimuli decreases with increasing ISI. This in turn means that identical stimuli in a different context have a differently perceived loudness. A correlation between specific characteristics in the electroencephalography responses and perceived loudness in an ILR experiment would therefore provide a neurophysiological indication of loudness processing beyond a neural representation of stimulus intensity only. To examine if such a correlation exists, we investigated cortical electroencephalography responses in a latency range from 75 to 510 ms during a psychoacoustical ILR experiment with different ISIs. With increasing ISI, the strength of the N1-P2 deflection of the respective electroencephalography response decreases similarly to the loudness perception of the target tone pulse. This indicates a representation based on loudness rather than on intensity at the corresponding processing stage.
Collapse
Affiliation(s)
- Florian H Schmidt
- Medizinische Physik and Cluster of Excellence Hearing4all, Universität Oldenburg, Germany
| | - Manfred Mauermann
- Medizinische Physik and Cluster of Excellence Hearing4all, Universität Oldenburg, Germany
| | - Birger Kollmeier
- Medizinische Physik and Cluster of Excellence Hearing4all, Universität Oldenburg, Germany
| |
Collapse
|
3
|
Jurado C, Gordillo D, Moore BCJ. On the loudness of low-frequency sounds with fluctuating amplitudes. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:1142. [PMID: 31472584 DOI: 10.1121/1.5121700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Some environmental sounds have strong amplitude fluctuations that may affect their perceived loudness and annoyance. This study assessed the effect of beat rate (fb) and center frequency (fc) on the loudness of low-frequency beating tones. The loudness of two-tone complexes (TTCs) with fc = 40, 63, 80, and 1000 Hz was matched with that of unmodulated tones (UTs). Frequency differences between the TTC components, corresponding to fb = 1, 2, 5, and 12 Hz, were used. To compensate for the steep decline in hearing sensitivity below 100 Hz, prior to the loudness match, subjects adjusted the relative levels (ΔL) of the TTC components to give maximum beat perception. Twenty-four normal-hearing subjects were tested. The values of ΔL giving best beats were well predicted from the transfer function of the middle ear and the estimated shapes of the auditory filters, assuming that the auditory filter whose output dominated the beat percept was centered somewhat above fc. At the same root-mean-square level and independent of fc, TTCs were perceived as louder than UTs for fb ≤ 2 Hz, had roughly equal loudness to UTs for fb = 5 Hz, and were less loud than UTs for fb = 12 Hz.
Collapse
Affiliation(s)
- Carlos Jurado
- Escuela de Ingenierıa en Sonido y Acustica, Universidad de Las Américas, Avenue Granados and Colimes, Quito EC170125, Ecuador
| | - Darío Gordillo
- Escuela de Ingenierıa en Sonido y Acustica, Universidad de Las Américas, Avenue Granados and Colimes, Quito EC170125, Ecuador
| | - Brian C J Moore
- Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, United Kingdom
| |
Collapse
|
4
|
Möhrle D, Hofmeier B, Amend M, Wolpert S, Ni K, Bing D, Klose U, Pichler B, Knipper M, Rüttiger L. Enhanced Central Neural Gain Compensates Acoustic Trauma-induced Cochlear Impairment, but Unlikely Correlates with Tinnitus and Hyperacusis. Neuroscience 2018; 407:146-169. [PMID: 30599268 DOI: 10.1016/j.neuroscience.2018.12.038] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 01/09/2023]
Abstract
For successful future therapeutic strategies for tinnitus and hyperacusis, a subcategorization of both conditions on the basis of differentiated neural correlates would be of invaluable advantage. In the present study, we used our refined operant conditioning animal model to divide equally noise-exposed rats into groups with either tinnitus or hyperacusis, with neither condition, or with both conditions co-occurring simultaneously. Using click stimulus and noise burst-evoked Auditory Brainstem Responses (ABR) and Distortion Product Otoacoustic Emissions, no hearing threshold difference was observed between any of the groups. However, animals with neither tinnitus nor hyperacusis responded to noise trauma with shortened ABR wave I and IV latencies and elevated central neuronal gain (increased ABR wave IV/I amplitude ratio), which was previously assumed in most of the literature to be a neural correlate for tinnitus. In contrast, animals with tinnitus had reduced neural response gain and delayed ABR wave I and IV latencies, while animals with hyperacusis showed none of these changes. Preliminary studies, aimed at establishing comparable non-invasive objective tools for identifying tinnitus in humans and animals, confirmed reduced central gain and delayed response latency in human and animals. Moreover, the first ever resting state functional Magnetic Resonance Imaging (rs-fMRI) analyses comparing humans and rats with and without tinnitus showed reduced rs-fMRI activities in the auditory cortex in both patients and animals with tinnitus. These findings encourage further efforts to establish non-invasive diagnostic tools that can be used in humans and animals alike and give hope for differentiated classification of tinnitus and hyperacusis.
Collapse
Affiliation(s)
- Dorit Möhrle
- University of Tübingen, Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany.
| | - Benedikt Hofmeier
- University of Tübingen, Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany.
| | - Mario Amend
- University of Tübingen, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Röntgenweg 13, 72076 Tübingen, Germany.
| | - Stephan Wolpert
- University of Tübingen, Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany.
| | - Kun Ni
- University of Tübingen, Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany; Shanghai Jiao Tong University, Department of Otolaryngology, Head & Neck Surgery, Shanghai Children's Hospital, Shanghai Luding Road, NO. 355. Putuo District, 200062 Shanghai, China.
| | - Dan Bing
- University of Tübingen, Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany.
| | - Uwe Klose
- University Hospital Tübingen, Department of Diagnostic and Interventional Neuroradiology, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany.
| | - Bernd Pichler
- University of Tübingen, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Röntgenweg 13, 72076 Tübingen, Germany.
| | - Marlies Knipper
- University of Tübingen, Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany.
| | - Lukas Rüttiger
- University of Tübingen, Department of Otolaryngology, Head & Neck Surgery, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany.
| |
Collapse
|
5
|
Formby C, Korczak P, Sherlock LP, Hawley ML, Gold S. Auditory Brainstem and Middle Latency Responses Measured Pre- and Posttreatment for Hyperacusic Hearing-Impaired Persons Successfully Treated to Improve Sound Tolerance and to Expand the Dynamic Range for Loudness: Case Evidence. Semin Hear 2017; 38:71-93. [PMID: 28286365 DOI: 10.1055/s-0037-1598066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In this report of three cases, we consider electrophysiologic measures from three hyperacusic hearing-impaired individuals who, prior to treatment to expand their dynamic ranges for loudness, were problematic hearing aid candidates because of their diminished sound tolerance and reduced dynamic ranges. Two of these individuals were treated with structured counseling combined with low-level broadband sound therapy from bilateral sound generators and the third case received structured counseling in combination with a short-acting placebo sound therapy. Each individual was highly responsive to his or her assigned treatment as revealed by expansion of the dynamic range by at least 20 dB at one or more frequencies posttreatment. Of specific interest in this report are their latency and amplitude measures taken from tone burst-evoked auditory brainstem response (ABR) and cortically derived middle latency response (MLR) recordings, measured as a function of increasing loudness at 500 and 2,000 Hz pre- and posttreatment. The resulting ABR and MLR latency and amplitude measures for each case are considered here in terms of pre- and posttreatment predictions. The respective pre- and posttreatment predictions anticipated larger pretreatment response amplitudes and shorter pretreatment response latencies relative to typical normal control values and smaller normative-like posttreatment response amplitudes and longer posttreatment response latencies relative to the corresponding pretreatment values for each individual. From these results and predictions, we conjecture about the neural origins of the hyperacusis conditions (i.e., brainstem versus cortical) and the neuronal sites responsive to treatment. The only consistent finding in support of the pre- and posttreatment predictions and, thus, the strongest index of hyperacusis and positive treatment-related effects was measured for MLR latency responses for wave Pa at 2,000 Hz. Other response indices, including ABR wave V latency and wave V-V' amplitude and MLR wave Na-Pa amplitude for 500 and 2,000 Hz, appear either ambiguous across and/or within these individuals. Notwithstanding significant challenges for interpreting these findings, including associated confounding effects of their sensorineural hearing losses and differences in the presentation levels of the toneburst stimuli used to collect these measures for each individual, our limited analyses of three cases suggest measures of MLR wave Pa latency at 2,000 Hz (reflecting cortical contributions) may be a promising objective indicator of hyperacusis and dynamic range expansion treatment effects.
Collapse
Affiliation(s)
- Craig Formby
- Department of Communicative Disorders, University of Alabama, Tuscaloosa, Alabama
| | - Peggy Korczak
- Department of Audiology, Speech Language Pathology, and Deaf Studies, Towson University, Towson, Maryland
| | - LaGuinn P Sherlock
- Army Hearing Division, United State Army Public Health Center (Provisional), Aberdeen Proving Ground, Aberdeen, Maryland; National Military Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Monica L Hawley
- Department of Otolaryngology-HNS, University of Iowa, Iowa City, Iowa
| | - Susan Gold
- University of Maryland Tinnitus and Hyperacusis Center (retired), Columbia, Maryland
| |
Collapse
|
6
|
Van Eeckhoutte M, Wouters J, Francart T. Auditory steady-state responses as neural correlates of loudness growth. Hear Res 2016; 342:58-68. [DOI: 10.1016/j.heares.2016.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 09/21/2016] [Accepted: 09/28/2016] [Indexed: 10/20/2022]
|
7
|
Otsuka A, Yumoto M, Kuriki S, Hotehama T, Nakagawa S. Frequency characteristics of neuromagnetic auditory steady-state responses to sinusoidally amplitude-modulated sweep tones. Clin Neurophysiol 2015; 127:790-802. [PMID: 26162292 DOI: 10.1016/j.clinph.2015.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 03/08/2015] [Accepted: 05/02/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE This study aimed to capture the neuronal frequency characteristics, as indexed by the auditory steady-state response (ASSR), relative to physical characteristics of constant sound pressure levels (SPLs). Relationship with perceptual characteristics (loudness model) was also examined. METHODS Neuromagnetic 40-Hz ASSR was recorded in response to sinusoidally amplitude-modulated sweep tones with carrier frequency covering the frequency range of 0.1-12.5kHz. Sound intensity was equalized at 50-, 60-, and 70-dB SPL with an accuracy of ±0.5-dB SPL at the phasic peak of the modulation frequency. Corresponding loudness characteristics were modeled by substituting the detected individual hearing thresholds into a standard formula (ISO226:2003(E)). RESULTS The strength of the ASSR component was maximum at 0.5kHz, and it decreased linearly on logarithmic scale toward lower and higher frequencies. Loudness model was plateaued between 0.5 and 4kHz. CONCLUSIONS Frequency characteristics of the ASSR were not equivalent to those of SPL and loudness model. Factors other than physical and perceptual frequency characteristics may contribute to characterizing the ASSR. SIGNIFICANCE The results contribute to the discussion of the most efficient signal summation for the generation of the ASSR at 0.5kHz and efficient neuronal processing at higher frequencies, which require less energy to retain equal perception.
Collapse
Affiliation(s)
- Asuka Otsuka
- Biomedical Research Institute, The National Institute of Advanced Industrial Science and Technology (AIST), Osaka, Japan; Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masato Yumoto
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinya Kuriki
- Research Center for Science and Technology, Tokyo Denki University, Chiba, Japan
| | - Takuya Hotehama
- Biomedical Research Institute, The National Institute of Advanced Industrial Science and Technology (AIST), Osaka, Japan
| | - Seiji Nakagawa
- Biomedical Research Institute, The National Institute of Advanced Industrial Science and Technology (AIST), Osaka, Japan.
| |
Collapse
|
8
|
Fournier P, Schönwiesner M, Hébert S. Loudness modulation after transient and permanent hearing loss: implications for tinnitus and hyperacusis. Neuroscience 2014; 283:64-77. [PMID: 25135356 DOI: 10.1016/j.neuroscience.2014.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 08/06/2014] [Accepted: 08/07/2014] [Indexed: 11/19/2022]
Abstract
Loudness is the primary perceptual correlate of sound intensity. The relationship between sound intensity and loudness is not fixed, and can be modified by short-term sound deprivation or stimulation. Deprivation increases sound sensitivity, whereas stimulation decreases it. We review the effects of short-term auditory deprivation and stimulation on the auditory central nervous system of humans and animals, and we extend the discussion to permanent auditory deprivation (hearing loss) and auditory pathologies of loudness perception. Although there is sufficient evidence to conclude that loudness can be modulated in normal hearing listeners by temporary sound deprivation and stimulation, evidence is scanter for the hearing-impaired listeners. In addition, cortical effects of sound deprivation and stimulation in humans, which may correlate with loudness coding, are still largely unknown and should be the target of future research.
Collapse
Affiliation(s)
- P Fournier
- School of Speech Pathology and Audiology, Université de Montréal, Montréal, Québec, Canada; International Laboratory for Research on Brain, Music, and Sound (BRAMS), Université de Montréal, Montréal, Québec, Canada; Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, Québec, Canada
| | - M Schönwiesner
- International Laboratory for Research on Brain, Music, and Sound (BRAMS), Université de Montréal, Montréal, Québec, Canada; Department of Psychology, Université de Montréal, Montréal, Québec, Canada
| | - S Hébert
- School of Speech Pathology and Audiology, Université de Montréal, Montréal, Québec, Canada; International Laboratory for Research on Brain, Music, and Sound (BRAMS), Université de Montréal, Montréal, Québec, Canada; Centre de recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, Québec, Canada.
| |
Collapse
|
9
|
|