1
|
Al-Thani RF, Yasseen BT. Methods Using Marine Aquatic Photoautotrophs along the Qatari Coastline to Remediate Oil and Gas Industrial Water. TOXICS 2024; 12:625. [PMID: 39330553 PMCID: PMC11435476 DOI: 10.3390/toxics12090625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/28/2024]
Abstract
Qatar and other Gulf States have a diverse range of marine vegetation that is adapted to the stressful environmental conditions of seawater. The industrial wastewater produced by oil and gas activities adds further detrimental conditions for marine aquatic photosynthetic organisms on the Qatari coastlines. Thus, these organisms experience severe stress from both seawater and industrial wastewater. This review discusses the biodiversity in seawater around Qatar, as well as remediation methods and metabolic pathways to reduce the negative impacts of heavy metals and petroleum hydrocarbons produced during these activities. The role of microorganisms that are adjacent to or associated with these aquatic marine organisms is discussed. Exudates that are released by plant roots enhance the role of microorganisms to degrade organic pollutants and immobilize heavy metals. Seaweeds may have other roles such as biosorption and nutrient uptake of extra essential elements to avoid or reduce eutrophication in marine environments. Special attention is paid to mangrove forests and their roles in remediating shores polluted by industrial wastewater. Seagrasses (Halodule uninervis, Halophila ovalis, and Thalassia hemprichii) can be used as promising candidates for phytoremediation or bioindicators for pollution status. Some genera among seaweeds that have proven efficient in accumulating the most common heavy metals found in gas activities and biodegradation of petroleum hydrocarbons are discussed.
Collapse
|
2
|
The Partial Contribution of Constructed Wetland Components (Roots, Gravel, Microorganisms) in the Removal of Phenols: A Mini Review. WATER 2022. [DOI: 10.3390/w14040626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Constructed wetlands (CW) have attracted growing interest in wastewater treatment research in the last 20 years, and have been investigated intensively worldwide. Many of the basic processes occurring in CWs have been qualitatively established; however, much quantitative knowledge is still lacking. In this mini review, the proportionate contributions of the different system components to removal of contaminants are examined. The main objective of this mini review is to provide a more in-depth assessment of the interactions between the porous bed, plants, and microorganisms during the removal of organic contaminants from the water in a subsurface flow CW system. In addition, a unique technique to study the partial contribution to the total removal of contaminants in a CW is described. Future studies in this field will expand our knowledge of any synergistic or antagonistic interactions between the components and facilitate improved CW construction and operation. Here, phenol will be used as a model industrial organic contaminant to illustrate our current understanding of the contributions of the different components to total removal. I will also discuss the various factors influencing the efficacy of bacteria, whether planktonic or as biofilm (on porous bed or plant roots), in subsurface flow CWs.
Collapse
|
3
|
A Gnotobiotic Model to Examine Plant and Microbiome Contributions to Survival under Arsenic Stress. Microorganisms 2020; 9:microorganisms9010045. [PMID: 33375331 PMCID: PMC7823691 DOI: 10.3390/microorganisms9010045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/27/2022] Open
Abstract
So far, the relative importance of the plant and its microbiome in the development of early stages of plant seedling growth under arsenic stress has not been studied. To test the role of endophytic bacteria in increasing plant success under arsenic stress, gnotobiotic seeds of J. montana were inoculated with two endophytic bacteria: Pantoea conspicua MC-K1 (PGPB and As resistant bacteria) and Arthrobacter sp. MC-D3A (non-helper and non-As resistant bacteria) and an endobacteria mixture. In holobiotic seedlings (with seed-vectored microbes intact), neither the capacity of germination nor development of roots and lateral hairs was affected at 125 μM As(V). However, in gnotobiotic seedlings, the plants are negatively impacted by absence of a microbiome and presence of arsenic, resulting in reduced growth of roots and root hairs. The inoculation of a single PGPB (P. conspicua-MCK1) shows a tendency to the recovery of the plant, both in arsenic enriched and arsenic-free media, while the inoculation with Arthrobacter sp. does not help in the recovery of the plants. Inoculation with a bacterial mixture allows recovery of plants in arsenic free media; however, plants did not recover under arsenic stress, probably because of a bacterial interaction in the mixture.
Collapse
|
4
|
Kurzbaum E, Raizner Y, Cohen O, Suckeveriene RY, Kulikov A, Hakimi B, Iasur Kruh L, Armon R, Farber Y, Menashe O. Encapsulated Pseudomonas putida for phenol biodegradation: Use of a structural membrane for construction of a well-organized confined particle. WATER RESEARCH 2017; 121:37-45. [PMID: 28505532 DOI: 10.1016/j.watres.2017.04.079] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/27/2017] [Accepted: 04/30/2017] [Indexed: 06/07/2023]
Abstract
Phenols are toxic byproducts from a wide range of industry sectors. If not treated, they form effluents that are very hazardous to the environment. This study presents the use of a Pseudomonas putida F1 culture encapsulated within a confined environment particle as an efficient technique for phenol biodegradation. The innovative encapsulation technique method, named the "Small Bioreactor Platform" (SBP) technology, enables the use of a microfiltration membrane constructed as a physical barrier for creating a confined environment for the encapsulated culture. The phenol biodegradation rate of the encapsulated culture was compared to its suspended state in order to evaluate the effectiveness of the encapsulation technique for phenol biodegradation. A maximal phenol biodegradation rate (q) of 2.12/d was exhibited by encapsulated P. putida at an initial phenol concentration of 100 mg/L. The biodegradation rate decreased significantly at lower and higher initial phenol concentrations of 50 and up to 3000 mg/L, reaching a rate of 0.1018/d. The results also indicate similar and up to double the degradation rate between the two bacterial states (encapsulated vs. suspended). High resolution scanning electron microscopy images of the SBP capsule's membrane morphology demonstrated a highly porous microfiltration membrane. These results, together with the long-term activity of the SBP capsules and verification that the culture remains pure after 60 days using 16S rRNA gene phylogenetic affiliation tests, provide evidence for a successful application of this new encapsulation technique for bioaugmentation of selected microbial cultures in water treatment processes.
Collapse
Affiliation(s)
- Eyal Kurzbaum
- Shamir Research Institute, University of Haifa, P.O. Box 97, Qatzrin, Israel.
| | - Yasmin Raizner
- Shamir Research Institute, University of Haifa, P.O. Box 97, Qatzrin, Israel
| | - Oded Cohen
- Shamir Research Institute, University of Haifa, P.O. Box 97, Qatzrin, Israel
| | - Ran Y Suckeveriene
- Water Industries Engineering Department, Achi Racov Engineering School, Kinneret College on the Sea of Galilee, D.N. Emek Ha'Yarden, 15132, Israel; Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | | | - Ben Hakimi
- Tel Hai College, Upper Galilee, 12208, Israel
| | - Lilach Iasur Kruh
- Department of Biotechnology Engineering, ORT Braude College, P.O. Box 78, 21982, Karmiel, Israel
| | - Robert Armon
- Faculty of Civil & Environmental Engineering, Division of Environmental, Water & Agricultural Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Yair Farber
- Faculty of Civil & Environmental Engineering, Division of Environmental, Water & Agricultural Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Ofir Menashe
- Water Industries Engineering Department, Achi Racov Engineering School, Kinneret College on the Sea of Galilee, D.N. Emek Ha'Yarden, 15132, Israel; BioCastle Water Technologies Ltd., Israel
| |
Collapse
|