1
|
Zeng R, Liu H, Hong Z, Wang X, Cheng S, Xu J, Dai Z. Co-inoculation effects of B. licheniformis and P. aeruginosa on soil Cd and As availability and rice accumulation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119739. [PMID: 38061100 DOI: 10.1016/j.jenvman.2023.119739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 01/14/2024]
Abstract
There have been studies reporting the effects of multiple bacterial strains on the Cd/As immobilization and transformation in culture media. However, there is limited research to validate the effects of microbial strain combination on plant Cd/As accumulation and antioxidant system in the soil-plant system. By planting the rice (Zhefu 7) with the co-inoculation of bacterial strains (i.e. Bacillus licheniformis and Pseudomonas aeruginosa) after two months with the contaminations of Cd (2 mg/kg), As (80 mg/kg) and Cd + As (2 + 80 mg/kg), we found that the bacterial co-inoculation decreased Cd concentrations in the rhizosphere soil porewater, but had limited effects on mitigating plant Cd accumulation. By contrast, the co-inoculation did not affect the As(III) and As(V) concentrations in the rhizosphere soil porewater, but decreased As(III) and As(V) concentrations by 17% and 17% in the root respectively and by 17% and 37% in rice shoot respectively. Using DNA sequencing, we found the increased abundance in both exogenous Bacillus licheniformis and native microorganisms, indicating that the added strains had synergetic interactions with soil native microorganisms. Regarding on plant antioxidant enzyme system, the bacterial co-inoculation decreased the concentrations of superoxide dismutase (SOD), hydrogen peroxide (H2O2) and malondialdehyde (MDA) by 75%, 74% and 22%, mitigating the As damage to rice root and promote plant growth. However, under Cd and As co-stress, the effects of co-inoculation on mitigating plant As accumulation and enhancing plant stress resistance appear to be diminished. Our findings underscore the importance of microbial co-inoculation in reducing plant As accumulation and preserving plant health under heavy metal stress.
Collapse
Affiliation(s)
- Rujiong Zeng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Huaiting Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zhiqi Hong
- Agricultural Experiment Station, Zhejiang University, Hangzhou, 310058, China
| | - Xiu Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Shuxun Cheng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; The Rural Development Academy at Zhejiang University, Zhejiang University, Hangzhou, 310058, China
| | - Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China; The Rural Development Academy at Zhejiang University, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Zhu Y, Wang Y, Liu H, Wang H, Xie M, Fang Z, Du S. ABA-metabolizing bacteria and rhamnolipids as valuable allies for enhancing phytoremediation efficiency in heavy metal-contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167398. [PMID: 37758153 DOI: 10.1016/j.scitotenv.2023.167398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/19/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
Microbial-assisted phytoremediation has great potential to improve the efficiency of phytoremediation in heavy metal (HM)-contaminated soils. In this study, the synergistic effects of rhamnolipids and the abscisic acid (ABA)-metabolizing bacterium Rhodococcus qingshengii on the phytoremediation efficiency of Indian mustard (Brassica juncea) in HM-contaminated soils were investigated. The Cd, Zn, and Pb contents in plants treated with a combination of rhamnolipids and R. qingshengii were 48.4-77.1 %, 14.6-40.4 %, and 16.1-20.0 % higher, respectively, than in those treated with R. qingshengii alone, and 42.8-59.2 %, 13.1-48.2 %, and 7.3-67.5 % higher, respectively, than in those treated with rhamnolipids alone. In addition, the bioconcentration factors of each metal were improved, and the biomass further increased by 36.6-65.7 % compared to that of single treatments. Pearson's correlation analysis showed that rhamnolipids and R. qingshengii enhanced the accumulation of HMs in B. juncea by activating the available forms of HMs in the soil and regulating the ABA and indole-3-acetic acid in plants, respectively. The structural equation model indicated that R. qingshengii had a larger path coefficient than rhamnolipids in terms of HM content and plant biomass, suggesting that R. qingshengii may have a greater contribution to promoting the extraction of HMs from the soil under synergistic conditions. In conclusion, the combination of rhamnolipids and R. qingshengii has great potential to enhance the phytoremediation efficiency of hyperaccumulating plants in HM-contaminated soils.
Collapse
Affiliation(s)
- Yaxin Zhu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Yu Wang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Huijun Liu
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hua Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Minghui Xie
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Zhiguo Fang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
3
|
Mahdi I, Fahsi N, Hijri M, Sobeh M. Antibiotic resistance in plant growth promoting bacteria: A comprehensive review and future perspectives to mitigate potential gene invasion risks. Front Microbiol 2022; 13:999988. [PMID: 36204627 PMCID: PMC9530320 DOI: 10.3389/fmicb.2022.999988] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/25/2022] [Indexed: 11/26/2022] Open
Abstract
Plant growth-promoting bacteria (PGPB) are endowed with several attributes that can be beneficial for host plants. They opened myriad doors toward green technology approach to reduce the use of chemical inputs, improve soil fertility, and promote plants' health. However, many of these PGPB harbor antibiotic resistance genes (ARGs). Less attention has been given to multi-resistant bacterial bioinoculants which may transfer their ARGs to native soil microbial communities and other environmental reservoirs including animals, waters, and humans. Therefore, large-scale inoculation of crops by ARGs-harboring bacteria could worsen the evolution and dissemination of antibiotic resistance and aggravate the negative impacts on such ecosystem and ultimately public health. Their introduction into the soil could serve as ARGs invasion which may inter into the food chain. In this review, we underscore the antibiotic resistance of plant-associated bacteria, criticize the lack of consideration for this phenomenon in the screening and application processes, and provide some recommendations as well as a regulation framework relating to the development of bacteria-based biofertilizers to aid maximizing their value and applications in crop improvement while reducing the risks of ARGs invasion.
Collapse
Affiliation(s)
- Ismail Mahdi
- Agrobiosciences Research Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Nidal Fahsi
- Agrobiosciences Research Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Mansour Sobeh
- Agrobiosciences Research Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| |
Collapse
|
4
|
Damo JLC, Ramirez MDA, Agake SI, Pedro M, Brown M, Sekimoto H, Yokoyama T, Sugihara S, Okazaki S, Ohkama-Ohtsu N. Isolation and Characterization of Phosphate Solubilizing Bacteria from Paddy Field Soils in Japan. Microbes Environ 2022; 37. [PMID: 35598988 PMCID: PMC9530731 DOI: 10.1264/jsme2.me21085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phosphorus (P) is abundant in soil and is essential for plant growth and development; however, it is easily rendered insoluble in complexes of different types of phosphates, which may lead to P deficiency. Therefore, increases in the amount of P released from phosphate minerals using microbial inoculants is an important aspect of agriculture. The present study used inorganic phosphate solubilizing bacteria (iPSB) in paddy field soils to develop microbial inoculants. Soils planted with rice were collected from different regions of Japan. Soil P was sequentially fractionated using the Hedley method. iPSB were isolated using selective media supplemented with tricalcium phosphate (Ca-P), aluminum phosphate (Al-P), or iron phosphate (Fe-P). Representative isolates were selected based on the P solubilization index and soil sampling site. Identification was performed using 16S rRNA and rpoB gene sequencing. Effectiveness was screened based on rice cultivar Koshihikari growth supplemented with Ca-P, Al-P, or Fe-P as the sole P source. Despite the relatively homogenous soil pH of paddy field sources, three sets of iPSB were isolated, suggesting the influence of fertilizer management and soil types. Most isolates were categorized as β-Proteobacteria (43%). To the best of our knowledge, this is the first study to describe the genera Pleomorphomonas, Rhodanobacter, and Trinickia as iPSB. Acidovorax sp. JC5, Pseudomonas sp. JC11, Burkholderia sp. JA6 and JA10, Sphingomonas sp. JA11, Mycolicibacterium sp. JF5, and Variovorax sp. JF6 promoted plant growth in rice supplemented with an insoluble P source. The iPSBs obtained may be developed as microbial inoculants for various soil types with different P fixation capacities.
Collapse
Affiliation(s)
| | | | - Shin-ichiro Agake
- United Graduate School of Agriculture, Tokyo University of Agriculture and Technology
| | - Mannix Pedro
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Los Baños
| | - Marilyn Brown
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Los Baños
| | | | | | - Soh Sugihara
- Institute of Agriculture, Tokyo University of Agriculture and Technology
| | - Shin Okazaki
- Institute of Agriculture, Tokyo University of Agriculture and Technology
| | - Naoko Ohkama-Ohtsu
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology
| |
Collapse
|
5
|
Sun Z, Yue Z, Liu H, Ma K, Li C. Microbial-Assisted Wheat Iron Biofortification Using Endophytic Bacillus altitudinis WR10. Front Nutr 2021; 8:704030. [PMID: 34414208 PMCID: PMC8368724 DOI: 10.3389/fnut.2021.704030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/02/2021] [Indexed: 12/20/2022] Open
Abstract
Microbial-assisted biofortification attracted much attention recently due to its sustainable and eco-friendly nature for improving nutrient content in wheat. An endophytic strain Bacillus altitudinis WR10, which showed sophistical regulation of iron (Fe) homeostasis in wheat seedlings, inspired us to test its potential for enhancing Fe biofortification in wheat grain. In this study, assays in vitro indicated that WR10 has versatile plant growth-promoting (PGP) traits and bioinformatic analysis predicted its non-pathogenicity. Two inoculation methods, namely, seed soaking and soil spraying, with 107 cfu/ml WR10 cells were applied once before sowing of wheat (Triticum aestivum L. cv. Zhoumai 36) in the field. After wheat maturation, evaluation of yield and nutrients showed a significant increase in the mean number of kernels per spike (KPS) and the content of total nitrogen (N), potassium (K), and Fe in grains. At the grain filling stage, the abundance of Bacillus spp. and the content of N, K, and Fe in the root, the stem, and the leaf were also increased in nearly all tissues, except Fe in the stem and the leaf. Further correlation analysis revealed a positive relationship between the total abundance of Bacillus spp. and the content of N, K, and Fe in grains. Seed staining confirmed the enhanced accumulation of Fe, especially in the embryo and the endosperm. Finally, using a hydroponic coculture model, qPCR quantification indicated effective colonization, internalization, translocation, and replication of strain WR10 in wheat within 48 h. Collectively, strain WR10 assisted successful Fe biofortification in wheat in the field, laying a foundation for further large-scale investigation of its applicability and effectiveness.
Collapse
Affiliation(s)
- Zhongke Sun
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China.,College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Zonghao Yue
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Hongzhan Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Keshi Ma
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Chengwei Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
6
|
Comparison of Two Inoculation Methods of Endophytic Bacteria to Enhance Phytodegradation Efficacy of an Aged Petroleum Hydrocarbons Polluted Soil. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10081196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Endophyte-enhanced phytodegradation is a promising technology to clean up polluted soils. To improve the success rate of this nature-based remediation approach, it is important to advance the inoculation method as this has been shown to strongly affect the final outcome. However, studies evaluating inoculation strategies and their effect on hydrocarbon degradation are limited. This study aims to investigate two different manners of endophyte inoculation in Lolium perenne growing in an aged petroleum hydrocarbon polluted soil: (1) direct soil inoculation (SI), and (2) pre-inoculation of the caryopses followed by soil inoculation (PI). Different endophytic bacterial strains, Rhodococcus erythropolis 5WK and Rhizobium sp. 10WK, were applied individually as well as in combination. Depending on the method of inoculation, the petroleum hydrocarbon (PHC) degradation potential was significantly different. The highest PHC removal was achieved after pre-inoculation of ryegrass caryopses with a consortium of both bacterial strains. Moreover, both strains established in the aged-polluted soil and could also colonize the roots and shoots of L. perenne. Importantly, used endophytes showed the selective colonization of the environment compartments. Our findings show that the method of inoculation determines the efficiency of the phytodegradation process, especially the rate of PHC degradation. This study provides valuable information for choosing the most cost-effective and beneficial means to optimize phytodegradation.
Collapse
|
7
|
Lopez S, van der Ent A, Sumail S, Sugau JB, Buang MM, Amin Z, Echevarria G, Morel JL, Benizri E. Bacterial community diversity in the rhizosphere of nickel hyperaccumulator plant species from Borneo Island (Malaysia). Environ Microbiol 2020; 22:1649-1665. [PMID: 32128926 DOI: 10.1111/1462-2920.14970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 12/01/2022]
Abstract
The Island of Borneo is a major biodiversity hotspot, and in the Malaysian state of Sabah, ultramafic soils are extensive and home to more than 31 endemic nickel hyperaccumulator plants. The aim of this study was to characterize the structure and the diversity of the rhizosphere bacterial communities of several of these nickel hyperaccumulator plants and factors that affect these bacterial communities in Sabah. The most abundant phyla were Proteobacteria, Acidobacteria and Actinobacteria. At family level, Burkholderiaceae and Xanthobacteraceae (Proteobacteria phylum) were the most abundant families in the hyperaccumulator rhizospheres. Redundancy analysis based on soil chemical analyses and relative abundances of the major bacterial phyla showed that abiotic factors of the studied sites drove the bacterial diversity. For all R. aff. bengalensis rhizosphere soil samples, irrespective of studied site, the bacterial diversity was similar. Moreover, the Saprospiraceae family showed a high representativeness in the R. aff. bengalensis rhizosphere soils and was linked with the nickel availability in soils. The ability of R. aff. bengalensis to concentrate nickel in its rhizosphere appears to be the major factor driving the rhizobacterial community diversity unlike for other hyperaccumulator species.
Collapse
Affiliation(s)
- Séverine Lopez
- Université de Lorraine, INRAE, Laboratoire Sols et Environnement, 54000, Nancy, France
| | - Antony van der Ent
- Université de Lorraine, INRAE, Laboratoire Sols et Environnement, 54000, Nancy, France.,Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, St Lucia, 4072, QLD, Australia
| | | | | | - Matsain Mohd Buang
- Forest Research Centre, Sabah Forestry Department, Sandakan, Sabah, Malaysia
| | - Zarina Amin
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Guillaume Echevarria
- Université de Lorraine, INRAE, Laboratoire Sols et Environnement, 54000, Nancy, France.,Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - Jean Louis Morel
- Université de Lorraine, INRAE, Laboratoire Sols et Environnement, 54000, Nancy, France
| | - Emile Benizri
- Université de Lorraine, INRAE, Laboratoire Sols et Environnement, 54000, Nancy, France
| |
Collapse
|
8
|
Rehman MZU, Rizwan M, Sohail MI, Ali S, Waris AA, Khalid H, Naeem A, Ahmad HR, Rauf A. Opportunities and challenges in the remediation of metal-contaminated soils by using tobacco (Nicotiana tabacum L.): a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18053-18070. [PMID: 31093913 DOI: 10.1007/s11356-019-05391-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 05/06/2023]
Abstract
The successful phytoextraction of potentially toxic elements (PTEs) from polluted soils can be achieved by growing non-food and industrial crops. Tobacco (Nicotiana tabacum L.) is one of the main industrial crops and is widely grown in many countries. Tobacco can uptake high concentrations of PTEs especially in aboveground biomass without suffering from toxicity. This review highlighted the potential of tobacco for the phytoextraction of heavy metals and tolerance mechanisms under metal stress. Different management practices have been discussed which can enhance the potential of this plant for metal extraction. Finally, suitable options for the management/disposal of biomass enriched in excess metal have been elaborated to prevent secondary pollution.
Collapse
Affiliation(s)
- Muhammad Zia Ur Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan.
| | - Muhammad Irfan Sohail
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan.
| | - Aisha A Waris
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Hinnan Khalid
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Asif Naeem
- Nuclear Institute for Agriculture and Biology (NIAB), P.O. Box 128, Jhang Road, Faisalabad, Pakistan
| | - Hamaad Raza Ahmad
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Arslan Rauf
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| |
Collapse
|
9
|
Rosenkranz T, Kidd P, Puschenreiter M. Effect of bacterial inoculants on phytomining of metals from waste incineration bottom ash. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 73:351-359. [PMID: 29273541 DOI: 10.1016/j.wasman.2017.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 12/05/2017] [Accepted: 12/07/2017] [Indexed: 06/07/2023]
Abstract
Waste incineration bottom ash is considered a secondary resource for valuable trace elements (TE), which is currently neglected in most European countries. Phytomining could potentially recover valuable TE from such waste materials but is still at an exploratory stage with many challenges. The use of bioaugmentation to improve plant growth and TE accumulation of metal-tolerant high biomass plants growing on waste incineration bottom ash was evaluated. Bacterial strains that were previously isolated from rhizosphere, roots and contaminated soil were selected according to their plant growth promoting characteristics and tolerance to the bottom ash substrate. Those selected bacterial strains were tested for their beneficial effects on Nicotiana tabacum and Salix smithiana with regards to phytomining. The rhizobacterial strain Rhodococcus erythropolis P30 enhanced the shoot dry weight of N. tabacum by on average 57% compared to the control plants. Several bacterial inoculants enhanced biomass production and the nutritional status of S. smithiana. Moreover, those bacterial strains previously described to enhance biomass production of N. tabacum and members of the Salicaceae on TE-contaminated soils, also enhanced biomass production of these species on bottom ash. However, bacterial inoculants could not enhance trace element accumulation in plants.
Collapse
Affiliation(s)
- Theresa Rosenkranz
- University of Natural Resources and Life Sciences, Vienna, Department of Forest and Soil Sciences, Institute of Soil Research, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria.
| | - Petra Kidd
- Instituto de Investigaciones Agrobiológicas de Galicia (IIAG), Consejo Superior de Investigaciones Científicas (CSIC), Santiago de Compostela 15705, Spain
| | - Markus Puschenreiter
- University of Natural Resources and Life Sciences, Vienna, Department of Forest and Soil Sciences, Institute of Soil Research, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| |
Collapse
|
10
|
The Role of the Rhizosphere and Microbes Associated with Hyperaccumulator Plants in Metal Accumulation. AGROMINING: FARMING FOR METALS 2018. [DOI: 10.1007/978-3-319-61899-9_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|