1
|
Su J, Zeng Q, Li S, Wang R, Hu Y. Comparison of organic and synthetic amendments for poplar phytomanagement in copper and lead-contaminated calcareous soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 355:120553. [PMID: 38471314 DOI: 10.1016/j.jenvman.2024.120553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/14/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024]
Abstract
Soil remediation can be achieved through organic and synthetic amendments, but the differences in the phytomanagement of trace metal-contaminated land are unclear. We conducted an outdoor microcosm experiment to simulate the effects of organic amendment citric acid and synthetic amendments EDTA and EGTA on poplar phytomanagement of copper (Cu)- and lead (Pb)-contaminated calcareous land at doses of 0, 1, 3, and 9 mmol kg-1. We found that soil-bioavailable Cu and Pb contents increased by 2.11-27.27 and 1.48-269 times compared to the control, respectively. Additionally, synthetic amendments had a long-lasting (within 25 days) effect on metal bioavailability relative to organic amendments. Consequently, organic amendments increased the root Cu and Pb contents by 2.68-48.61% and 6.60-49.51%, respectively, whereas synthetic amendments increased them by 65.94-260% and 12.50-103%. The Cu and Pb contents in the leaves were lower than those in the roots, and increased significantly by 47.04-179% and 237-601%, respectively, only under synthetic amendments. Interestingly, none of the amendments increased the Cu and Pb content in poplar stems (<5 mg kg-1), which remained within the normal range for terrestrial plants. Regardless of the type and addition level, the amendments did not affect poplar growth. Nevertheless, synthetic amendments caused a significant redistribution of metals (Cu: 22-32%; Pb: 23-53%) from the topsoil into the subsoil within the root zone at medium and high levels relative to organic amendments. Therefore, organic and synthetic amendments can assist poplar phytomanagement with a phytostabilization strategy for Cu- and Pb-contaminated calcareous land and obtain marketable wood biomass. Moreover, collecting leaf litter is crucial when using synthetic amendments at optimum concentration levels.
Collapse
Affiliation(s)
- Jieqiong Su
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Qiaohong Zeng
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shuqi Li
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Rui Wang
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yahu Hu
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Ibrahim EA. Effect of citric acid on phytoextraction potential of Cucurbita pepo, Lagenaria siceraria, and Raphanus sativus plants exposed to multi-metal stress. Sci Rep 2023; 13:13070. [PMID: 37567950 PMCID: PMC10421947 DOI: 10.1038/s41598-023-40233-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023] Open
Abstract
Phytoextraction is a novel technique that involves using plants to remove heavy metals from contaminated soils. An outdoor pot experiment was designed to evaluate the phytoextraction potential of three plant species Cucurbita pepo, Lagenaria siceraria, and Raphanus sativus in soil contaminated with multiple metals (Cd, Co, Cr, Cu, Ni, Pb, and Zn) under the application of citric acid. The results showed that Raphanus sativus, out of all the studied plants, had the highest root and shoot dry weight and the capacity to accumulate all heavy metals at higher concentrations except for Cu. The application of citric acid into the polluted soil significantly increased plant growth, biomass, and heavy metal uptake. High bioconcentration values indicate that Raphanus sativus is a promising plant for absorbing and accumulating Cd and Ni from the soil. The maximum values of bioconcentration were also observed by the application of citric acid. The values of metal translocation from the root to the shoot were varied by plant species and the citric acid application. Regarding the biomass, metal content, as well as removal metal percentage values, it became apparent that the Raphanus sativus plant was the most effective crop in removing heavy metals from multi-metal contaminated Soil. Generally, these findings emphasize that the application of citric acid could be a useful approach to assist Cd and Ni phytoextraction by Raphanus sativus plants. When these plants are growing as vegetable crops, more attention should be given to evaluating the heavy metal content in them, especially when adding citric acid to their soil through fertigation systems to avoid food chain contamination.
Collapse
Affiliation(s)
- Ehab A Ibrahim
- Vegetables Research Department, Horticulture Research Institute, Agricultural Research Center, 9 Cairo University St., Orman, Giza, Egypt.
| |
Collapse
|
3
|
Guidi Nissim W, Labrecque M. Field assessment of trace element phytoextraction by different Populus clones established on brownfields in southern Quebec (Canada). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:283-292. [PMID: 35605106 DOI: 10.1080/15226514.2022.2074964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fast-growing hybrid poplars have been tested for their potential to remove trace elements (TE) from polluted soil in several temperate regions. Despite their potential, they have rarely been tested in countries with a cold temperate climate. The current study screened four different Populus hybrids for phytoextraction of four TEs (i.e., As, Cu, Pb, and Zn) on an abandoned brownfield site in southern Quebec (Canada). The main results showed that under the current experimental conditions, the most important traits determining the actual phytoextraction rate are Biological Concentration Factor (BCF) and TE accumulation in the aboveground biomass, rather than biomass productivity. Although the overall performance of the chosen hybrids was rather poor, the presence of poplar stands enhanced the movement of mobile contaminants in soil, which led to an increase in their concentration in the root zone. This aspect suggests possible strategies for using these plants with high transpiration rates in future phytoremediation projects, including either possible rotation with more effective TE phytoextractor plants (e.g., hyperaccumulators) that can remove high TE amounts that have migrated from the deeper soil layers following poplar plantation, or phytostabilization.
Collapse
Affiliation(s)
- Werther Guidi Nissim
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Michel Labrecque
- Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Canada
| |
Collapse
|
4
|
Yuan L, Guo P, Guo S, Wang J, Huang Y. Influence of electrical fields enhanced phytoremediation of multi-metal contaminated soil on soil parameters and plants uptake in different soil sections. ENVIRONMENTAL RESEARCH 2021; 198:111290. [PMID: 33965386 DOI: 10.1016/j.envres.2021.111290] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/05/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
The influence of electrical fields on phytoremediation of multi-metal (Cd, Cu, and Zn) naturally contaminated soils has been investigated based on different soil sections. After ryegrass and hybrid penisetum were sowed for 30 d, electrical fields were applied during 30 days with the switching polarity every 30 min and continuing for 16 h d-1. After electrokinetic (EK) assisted phytoremediation process, soil electrical conductivity (EC) in anode section and available soil potassium (K) in cathode section were obviously elevated. Plants biomass in middle and cathode sections were increased in both plants, especially in middle section the overall biomass of hybrid penisetum increased by 68.8%. The influence of electrical field on the contents of heavy metals in plants was different depending on the species of plants, kind of heavy metals and soil section. For Cd, Cu, and Zn co-contaminated soils, shoot metals accumulation in middle section in both plants were improved at least about 20% (with the exception of Zn in ryegrass). Electrical fields had the most significant effect on copper absorption by ryegrass and shoot Cu accumulation were elevated 32.5% in all the section. The soil EC maybe an important factor that affected electrical fields enhanced plants growth, plant metals concentrations and remediation efficiency.
Collapse
Affiliation(s)
- Lizhu Yuan
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | | | - Shuhai Guo
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Jianing Wang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Yujie Huang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| |
Collapse
|
5
|
Luo J, He W, Rinklebe J, Igalavithana AD, Tack FMG, Ok YS. Distribution characteristics of Cd in different types of leaves of Festuca arundinacea intercropped with Cicer arietinum L.: A new strategy to remove pollutants by harvesting senescent and dead leaves. ENVIRONMENTAL RESEARCH 2019; 179:108801. [PMID: 31606617 DOI: 10.1016/j.envres.2019.108801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/20/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Although cost-effective, phytoremediation is too expensive when considering the large-scale pollution. Relative to harvesting the whole plant, it is more practicable to remove and dispose of senescent and dead leaves after phytoremediation. The phytoremediation efficiency of Festuca arundinacea for Cd was evaluated in this study, because over about 7% of the land area in China was contaminated with Cd. The accumulation, redistribution, and extraction of Cd were evaluated in different leaves of F. arundinacea intercropped with N-fixing species at different densities (Cicer arietinum L). The results showed that coordinate and malposed intercropping systems increased the dry weight of the senescent and dead leaves of F. arundinacea by 30-41% and 103-168% compared to the monoculture system, respectively. More Cd was redistributed to the senescent and dead leaves of F. arundinacea under both intercropping systems. Occupying only 22-30% of the total leaf biomass, senescent and dead leaves accumulated 74-88% of leaf Cd under different cultivation conditions. Relative to the monoculture system, intercropping decreased the amount of time needed to reduce soil Cd by 44-53%. The biomass production and Cd accumulation of F. arundinacea were higher in the malposed intercropping system, and it had higher remediation efficiency than the coordinate intercropping system. This study demonstrated that intercropping, especially malposed intercropping of F. arundinacea and C. arietinum L., is a practicable technology for leaf harvesting phytoremediation.
Collapse
Affiliation(s)
- Jie Luo
- College of Resources and Environment, Yangtze University, Wuhan, 430100, China
| | - Wenxiang He
- College of Resources and Environment, Yangtze University, Wuhan, 430100, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Soil Engineering, Waste- and Water Science, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, 05006, South Korea
| | - Avanthi Deshani Igalavithana
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Filip M G Tack
- Laboratory of Analytical Chemistry and Applied Ecochemistry, Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
6
|
Tang C, Chen Y, Zhang Q, Li J, Zhang F, Liu Z. Effects of peat on plant growth and lead and zinc phytostabilization from lead-zinc mine tailing in southern China: Screening plant species resisting and accumulating metals. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 176:42-49. [PMID: 30921695 DOI: 10.1016/j.ecoenv.2019.03.078] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 05/22/2023]
Abstract
In order to investigate the toxicity-resistance of eighteen Chinese native plants in lead (Pb)-zinc (Zn) mine tailings, we categorized their resistance to Pb and Zn, and tested their potential for phytoremediation effectiveness of Pb and Zn. Fourteen woody plant species belonging to 12 families, and 4 herbaceous species belonging to 4 families, were grown in pots with mixtures of 100% tailing +0% peat (CK), 90% tailing +10% peat (A1), and 80% tailing + 20% peat (A2), respectively. Plant height and biomass, chlorophyll content, and Pb and Zn contents of non-rhizosphere spoil mixtures and plant tissues were measured. Fifteen of the plants grew in all three spoil mixtures. Both A1 and A2 had higher plant height and biomass increment and chlorophyll contents than CK. The content of Pb and Zn in plant shoots and roots was CK > A1 > A2. The value of BCF less than 0.1, compared to 1, was a more precise classification basis for plants excluding metals. Screening for Pb and Zn resistant plants and their bioremediation potential produced the following candidate species: Sapium sebiferum, Salix matsudana, Hibiscus cannabinus, Corchorus capsularis, Ricinus communis, and Populus nigra. These species were highly Pb and Zn tolerant species, with notable growth characteristics and capacities to bioaccumulate Pb and Zn from the mine tailings. Compared to CK, the removal of Pb and Zn from non-rhizosphere spoil increased by an average of 9.64% and 9.6%, respectively in A1, but decreased in A2. The results indicated candidate species and 10% peat addition in the tailing were significant in phytoremediation of Pb and Zn regarding environmental safety.
Collapse
Affiliation(s)
- Chunfang Tang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Yonghua Chen
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China.
| | - Qianni Zhang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Jianbin Li
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Fuyun Zhang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM, 88130, USA.
| |
Collapse
|