1
|
Marques DN, Nogueira ML, Gaziola SA, Batagin-Piotto KD, Freitas NC, Alcantara BK, Paiva LV, Mason C, Piotto FA, Azevedo RA. New insights into cadmium tolerance and accumulation in tomato: Dissecting root and shoot responses using cross-genotype grafting. ENVIRONMENTAL RESEARCH 2023; 216:114577. [PMID: 36252830 DOI: 10.1016/j.envres.2022.114577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) is one of the most threatening soil and water contaminants in agricultural settings. In previous studies, we observed that Cd affects the metabolism and physiology of tomato (Solanum lycopersicum) plants even after short-term exposure. The objective of this research was to use cross-genotype grafting to distinguish between root- and shoot-mediated responses of tomato genotypes with contrasting Cd tolerance at the early stages of Cd exposure. This study provides the first report of organ-specific contributions in two tomato genotypes with contrasting Cd tolerance: Solanum lycopersicum cv. Calabash Rouge and Solanum lycopersicum cv. Pusa Ruby (which have been classified and further characterized as sensitive (S) and tolerant (T) to Cd, respectively). Scion S was grafted onto rootstock S (S/S) and rootstock T (S/T), and scion T was grafted onto rootstock T (T/T) and rootstock S (T/S). A 35 μM cadmium chloride (CdCl2) treatment was used for stress induction in a hydroponic system. Both shoot and root contributions to Cd responses were observed, and they varied in a genotype- and/or organ-dependent manner for nutrient concentrations, oxidative stress parameters, antioxidant enzymes, and transporters gene expression. The findings overall provide evidence for the dominant role of the tolerant rootstock system in conferring reduced Cd uptake and accumulation. The lowest leaf Cd concentrations were observed in T/T (215.11 μg g-1 DW) and S/T (235.61 μg g-1 DW). Cadmium-induced decreases in leaf dry weight were observed only in T/S (-8.20%) and S/S (-13.89%), which also were the only graft combinations that showed decreases in chlorophyll content (-3.93% in T/S and -4.05% in S/S). Furthermore, the results show that reciprocal grafting is a fruitful approach for gaining insights into the organ-specific modulation of Cd tolerance and accumulation during the early stages of Cd exposure.
Collapse
Affiliation(s)
- Deyvid Novaes Marques
- Department of Genetics, University of São Paulo/Luiz de Queiroz College of Agriculture (USP/ESALQ), Piracicaba, SP, Brazil.
| | - Marina Lima Nogueira
- Department of Genetics, University of São Paulo/Luiz de Queiroz College of Agriculture (USP/ESALQ), Piracicaba, SP, Brazil
| | - Salete Aparecida Gaziola
- Department of Genetics, University of São Paulo/Luiz de Queiroz College of Agriculture (USP/ESALQ), Piracicaba, SP, Brazil
| | | | - Natália Chagas Freitas
- Central Laboratory of Molecular Biology, Department of Chemistry, Federal University of Lavras (UFLA), Lavras, MG, Brazil
| | | | - Luciano Vilela Paiva
- Central Laboratory of Molecular Biology, Department of Chemistry, Federal University of Lavras (UFLA), Lavras, MG, Brazil
| | - Chase Mason
- Department of Biology, University of Central Florida, Orlando, FL, USA
| | - Fernando Angelo Piotto
- Department of Crop Science, University of São Paulo/Luiz de Queiroz College of Agriculture (USP/ESALQ), Piracicaba, SP, Brazil
| | - Ricardo Antunes Azevedo
- Department of Genetics, University of São Paulo/Luiz de Queiroz College of Agriculture (USP/ESALQ), Piracicaba, SP, Brazil
| |
Collapse
|
2
|
Rashid MH, Rahman MM, Naidu R. Zinc Biofortification through Basal Zinc Supply Reduces Grain Cadmium in Mung Beans: Metal Partitioning and Health Risks Assessment. TOXICS 2022; 10:689. [PMID: 36422897 PMCID: PMC9692611 DOI: 10.3390/toxics10110689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Grain zinc (Zn) biofortification with less cadmium (Cd) accumulation is of paramount importance from human health and environmental point of view. A pot experiment was carried out to determine the influence of Zn and Cd on their accumulations in Mung bean tissues (Vigna radiata) in two contrast soil types (Dermosol and Tenosol). The soil types with added Zn and Cd exerted a significant effect on translocation and accumulation of metals in different tissues. The accumulation of Zn and Cd was higher for Tenosol than that for Dermosol. At control, the concentration of Cd followed a pattern, e.g., root > stem > petiole > pod > leaflet > grain for both soils. A basal Zn supply (5 mg kg−1) increased the grain Zn concentration to a significant amount (up to 67%). It also reduced Cd accumulation in tissues, including grains (up to 34%). No non-carcinogenic effect was observed for either the children or the adults as the EDI and PTDI values were below the safety limit; however, the ILCR values exceeded the safety limit, indicating the possibility of some carcinogenic effects. Added Zn helped to reduce the carcinogenic and non-carcinogenic health risks on humans.
Collapse
Affiliation(s)
- Md Harunur Rashid
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
- Bangladesh Agricultural Research Institute (BARI), Gazipur 1701, Bangladesh
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
- Department of General Educational Development, Faculty of Science & Information Technology, Daffodil International University, Dhaka 1207, Bangladesh
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ATC Building, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
3
|
Banerjee A, Roychoudhury A. Explicating the cross-talks between nanoparticles, signaling pathways and nutrient homeostasis during environmental stresses and xenobiotic toxicity for sustainable cultivation of cereals. CHEMOSPHERE 2022; 286:131827. [PMID: 34403897 DOI: 10.1016/j.chemosphere.2021.131827] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/15/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Precision farming using nanoparticles is a cutting-edge technology for safe cultivation of crop plants in marginal areas afflicted with environmental/climatic stresses like salinity, drought, extremes of temperature, ultraviolet B stress or polluted with xenobiotics like toxic heavy metals and fluoride. Major cereal crops like rice, wheat, maize, barley, sorghum and millets which provide the staple food for the entire global population are mainly glycophytes and are extremely susceptible to abiotic stress-induced oxidative injuries. Nanofertilization/exogenous spraying of beneficial nanoparticles alleviates the oxidative damages in cereals by altering the homeostasis of phytohormones like abscisic acid, gibberellins, cytokinins, auxins, salicylic acid, jasmonic acid and melatonin and by triggering the synthesis of gasotransmitter nitric oxide. Signaling cross-talks of nanoparticles with plant growth regulators enable activation of the defence machinery, comprising of antioxidants, thiol-rich compounds and glyoxalases and restrict xenobiotic mobilization by suppressing the expression of associated transporters. Accelerated nutrient uptake and grain biofortification under the influence of nanoparticles result in optimum crop productivity under sub-optimal conditions. However, over-dosing of even beneficial nanoparticles promotes severe phytotoxicity. Hence, the concentration of nanoparticles and mode of administering need to be thoroughly standardized before large-scale field applications, to ensure sustainable cereal cultivation with minimum ecological imbalance.
Collapse
Affiliation(s)
- Aditya Banerjee
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India
| | - Aryadeep Roychoudhury
- Post Graduate Department of Biotechnology, St. Xavier's College (Autonomous), 30, Mother Teresa Sarani, Kolkata, 700016, West Bengal, India.
| |
Collapse
|
4
|
Phytoremediation of Cadmium: Physiological, Biochemical, and Molecular Mechanisms. BIOLOGY 2020; 9:biology9070177. [PMID: 32708065 PMCID: PMC7407403 DOI: 10.3390/biology9070177] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022]
Abstract
Cadmium (Cd) is one of the most toxic metals in the environment, and has noxious effects on plant growth and production. Cd-accumulating plants showed reduced growth and productivity. Therefore, remediation of this non-essential and toxic pollutant is a prerequisite. Plant-based phytoremediation methodology is considered as one a secure, environmentally friendly, and cost-effective approach for toxic metal remediation. Phytoremediating plants transport and accumulate Cd inside their roots, shoots, leaves, and vacuoles. Phytoremediation of Cd-contaminated sites through hyperaccumulator plants proves a ground-breaking and profitable choice to combat the contaminants. Moreover, the efficiency of Cd phytoremediation and Cd bioavailability can be improved by using plant growth-promoting bacteria (PGPB). Emerging modern molecular technologies have augmented our insight into the metabolic processes involved in Cd tolerance in regular cultivated crops and hyperaccumulator plants. Plants’ development via genetic engineering tools, like enhanced metal uptake, metal transport, Cd accumulation, and the overall Cd tolerance, unlocks new directions for phytoremediation. In this review, we outline the physiological, biochemical, and molecular mechanisms involved in Cd phytoremediation. Further, a focus on the potential of omics and genetic engineering strategies has been documented for the efficient remediation of a Cd-contaminated environment.
Collapse
|
5
|
Esteves GDF, de Souza KRD, Bressanin LA, Andrade PCC, Veroneze Júnior V, Dos Reis PE, da Silva AB, Mantovani JR, Magalhães PC, Pasqual M, de Souza TC. Vermicompost improves maize, millet and sorghum growth in iron mine tailings. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 264:110468. [PMID: 32250898 DOI: 10.1016/j.jenvman.2020.110468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/27/2020] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
The Fundão dam was designed to store iron mine tailings in the region of Mariana, MG, Brazil. When it ruptured, the tailings overflowed. These tailings affected the soil due to the formation of a thick crust as a result of drying (compaction) and hindered the natural revegetation process. In this context, the use of organic fertilizers, including vermicompost, is method of reducing the physical limitations on root growth caused by soil properties and changing soil-metal interactions. For this reason, vermicompost was added to iron mine tailings, and its morphological and physiological effects on maize, millet and sorghum plants were studied. The experiment was conducted in a greenhouse using 6 dm3 pots. The plants were subjected to three treatments: mine tailings, mine tailings + vermicompost, and a reference soil. From the V3 stage onwards, biweekly growth, leaf gas exchange and chlorophyll fluorescence evaluations were performed. At the end of the experiment, dry biomass and metal, macro- and micronutrient contents were quantified, and the root morphology was evaluated. The tailings created physical limitations on root growth and had low nutrient content as well as high concentrations of chromium, iron and manganese. The addition of vermicompost favored increases in shoot and root dry biomass, increases in root length, volume, surface area and diameter, and the absorption of macro- and micronutrients, which was reflected in the growth of the studied species. In addition, vermicompost led to greater investment in thick and very thick roots, and in general, the plants showed no symptoms of metal toxicity. Considering the characteristics of the studied tailings, it can be concluded that vermicompost favors the growth of plant species and may be a viable method for beginning the recovery process in areas containing iron mine tailings.
Collapse
Affiliation(s)
- Gisele de Fátima Esteves
- Universidade Federal de Alfenas - UNIFAL-MG, Instituto de Ciências da Natureza - ICN, Alfenas, MG, Brazil
| | | | | | - Paula Cristina Castro Andrade
- Universidade José Do Rosário Vellano - UNIFENAS, Setor de Ciências Agrícolas, Rod MG 39 Km 0, 37130-000, Alfenas, MG, Brazil
| | - Valdir Veroneze Júnior
- Universidade Federal de Alfenas - UNIFAL-MG, Instituto de Ciências da Natureza - ICN, Alfenas, MG, Brazil
| | - Pedro Ernesto Dos Reis
- Universidade Federal de Alfenas - UNIFAL-MG, Instituto de Ciências da Natureza - ICN, Alfenas, MG, Brazil
| | - Adriano Bortolotti da Silva
- Universidade José Do Rosário Vellano - UNIFENAS, Setor de Ciências Agrícolas, Rod MG 39 Km 0, 37130-000, Alfenas, MG, Brazil
| | - José Ricardo Mantovani
- Universidade José Do Rosário Vellano - UNIFENAS, Setor de Ciências Agrícolas, Rod MG 39 Km 0, 37130-000, Alfenas, MG, Brazil
| | - Paulo César Magalhães
- Centro Nacional de Pesquisa em Milho e Sorgo, P. O. Box 151, 35701-970, Sete Lagoas, MG, Brazil
| | - Moacir Pasqual
- Universidade Federal de Lavras - UFLA, Departamento de Biologia, Laboratório de Anatomia de Plantas, CEP: 37200-000, Lavras, MG, Brazil
| | - Thiago Corrêa de Souza
- Universidade Federal de Alfenas - UNIFAL-MG, Instituto de Ciências da Natureza - ICN, Alfenas, MG, Brazil.
| |
Collapse
|
6
|
Phytoremediation of copper, iron and mercury from aqueous solution by water lettuce (Pistia stratiotes L.). ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42398-019-00050-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
7
|
Tang C, Zhang R, Hu X, Song J, Li B, Ou D, Hu X, Zhao Y. Exogenous spermidine elevating cadmium tolerance in Salix matsudana involves cadmium detoxification and antioxidant defense. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:305-315. [PMID: 30648425 DOI: 10.1080/15226514.2018.1524829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 08/25/2018] [Accepted: 08/27/2018] [Indexed: 06/09/2023]
Abstract
In this study, exogenous spermidine role on Salix matsudana tolerance to cadmium was evaluated. Spermidine and cadmium presented antagonistic effects on the biomass, copper and zinc concentrations in S. matsudana. cadmium mainly distributed in the cell wall of subcellular fraction; 46.97%-60.43% of cadmium existed in a sodium chloride-extracted form. Cadmium contents in roots, leaves, and twigs ranged from 2002.67 to 3961.00, 111.59 to 229.72, and 102.56 to 221.27 mg/kg, respectively. Spermidine application elevated cadmium concentrations in the roots, cuttings, and cell wall and the ratio of deionized water-extracted cadmium, but decreased cadmium levels in the twigs and leaves and the fractions of cadmium extracted by ethanol and sodium chloride, respectively. Putrescine and malondialdehyde were important indicators of cadmium-induced oxidative damage. Exogenous spermidine alleviated the accumulation of superoxide anion, hydrogen peroxide, malondialdehyde via promoting the levels of spermidine, soluble protein, superoxide dismutase, reductive ascorbate, glutathione reductase, and glutathione peroxidase in S. matsudana leaves under the corresponding cadmium stress. The results indicated that S. matsudana was a candidate for cadmium rhizoremediation and extraction in leaves; the spermidine application enhanced the cadmium tolerance of S. matsudana through promoting cadmium accumulation in roots, cell wall, and less bioactive chemical forms and the antioxidative ability.
Collapse
Affiliation(s)
- Chunfang Tang
- a College of Environmental Science and Engineering , Central South University of Forestry and Technology , Changsha , China
| | - Riqing Zhang
- b College of Forestry , Central South University of Forestry and Technology , Changsha , China
| | - Xinjiang Hu
- a College of Environmental Science and Engineering , Central South University of Forestry and Technology , Changsha , China
- c College of Life Science and Technology , Central South University of Forestry and Technology , Changsha , China
| | - Jinfeng Song
- a College of Environmental Science and Engineering , Central South University of Forestry and Technology , Changsha , China
| | - Bing Li
- a College of Environmental Science and Engineering , Central South University of Forestry and Technology , Changsha , China
| | - Danling Ou
- a College of Environmental Science and Engineering , Central South University of Forestry and Technology , Changsha , China
| | - Xi Hu
- a College of Environmental Science and Engineering , Central South University of Forestry and Technology , Changsha , China
| | - Yunlin Zhao
- c College of Life Science and Technology , Central South University of Forestry and Technology , Changsha , China
| |
Collapse
|
8
|
Azizollahi Z, Ghaderian SM, Ghotbi-Ravandi AA. Cadmium accumulation and its effects on physiological and biochemical characters of summer savory ( Satureja hortensis L.). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:1241-1253. [PMID: 31140292 DOI: 10.1080/15226514.2019.1619163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The objective of this study was to determine the effects of cadmium (Cd) toxicity on accumulation, growth, physiological responses, and biochemical characters in summer savory (Satureja hortensis L.). Plants were subjected to different levels of Cd concentrations including 0 (control), 2.5, 5, and 15 mg L-1 in the growing medium. Cd exposure led to a significant increase in root and shoot Cd content. Calculation of bioaccumulation factor, translocation factor, and transfer coefficient revealed that Cd mostly accumulated in roots of S. hortensis and root to shoot transport was effectively restricted. Cd toxicity negatively affected plant growth and significantly reduced chlorophyll content. Contrarily, proline, soluble and reducing carbohydrates, anthocyanin content, and the activity of antioxidant enzymes significantly increased as a result of Cd exposure. Cd application led to a significant increase in essential oil content of S. hortensis. GC-MS analysis revealed that percentage main constitute of S. hortensi, carvacrol, which determines the quality of oil increased under the highest Cd treatment. Based on our findings, S. hortensis can be considered an invaluable alternative crop for mildly Cd-contaminated soils. Besides, due to the high potential of Cd accumulation in the root, S. hortensis may offer a feasible tool for phytostabilization purposes.
Collapse
Affiliation(s)
- Zahra Azizollahi
- Department of Biology, Faculty of Sciences, University of Isfahan , Isfahan , Iran
| | | | - Ali Akbar Ghotbi-Ravandi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University , Tehran , Iran
| |
Collapse
|
9
|
Grobelak A, Hiller J. Bacterial siderophores promote plant growth: Screening of catechol and hydroxamate siderophores. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2017; 19:825-833. [PMID: 28699782 DOI: 10.1080/15226514.2017.1290581] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The aim of the study was to determine the quality and quantity of siderophores produced by bacteria isolated from plants' roots. The second aim was to determine the effect of siderophores on plants growth (Festuca rubra L. and Brassica napus L.). The study was carried out using bacteria isolated from roots of: Arabidopsis thaliana L., F. rubra, and Agrostis capillaris L., growing on the heavy metals contaminated area. The chrome azurol sulfonate (CAS) test, Arnow's test for catechol siderophores, and Csaksy's test for hydroxamate siderophores were performed. Among the bacteria, 42 isolates (39%) had a positive result in the CAS. Endophytic bacteria were mostly producing the catechol siderophores. It was found that F. rubra is the plant which is linked with the highest number of siderophores producing bacteria. The highest concentration of siderophores was noted for ectorhizospheric bacteria associated with A. thaliana, hyperaccumulating plant. It was found that hydroxamate siderophores are mainly produced by ectorhizosphere and rhizoplane bacteria. The siderophores producing bacteria reduced the toxicity of metals and improved the phytoremediation. Siderophores treatment increased the growth of plants in the biological assay, growing on two different soils: one highly contaminated with heavy metals and the second strongly alkaline soil.
Collapse
Affiliation(s)
- Anna Grobelak
- a Institute of Environmental Engineering, Faculty of Infrastructure and Environment, Czestochowa University of Technology , Czestochowa , Poland
| | - Joanna Hiller
- a Institute of Environmental Engineering, Faculty of Infrastructure and Environment, Czestochowa University of Technology , Czestochowa , Poland
| |
Collapse
|