1
|
Nguyen KV, Naviaux RK, Nyhan WL. Lesch-Nyhan disease: I. Construction of expression vectors for hypoxanthine-guanine phosphoribosyltransferase (HGprt) enzyme and amyloid precursor protein (APP). NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 39:905-922. [PMID: 32312153 DOI: 10.1080/15257770.2020.1714653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Lesch-Nyhan disease (LND) is a rare X-linked inherited neurogenetic disorder of purine metabolism in which the enzyme, hypoxanthine-guanine phosphoribosyltransferase (HGprt) is defective. Despite having been characterized over 50 years ago, it remains unclear precisely how deficits in HGprt enzyme activity can lead to the neurological syndrome, especially the self-injury of LND. Several studies have proposed different hypotheses regarding the etiology of this disease, and several treatments have been tried in patients. However, up to now, there is no satisfactory explanation of the disease and for many LND patients, efficacious treatment for persistent self-injurious behavior remains unreachable. A role for epistasis between mutated hypoxanthine phosphoribosyltransferase 1 (HPRT1) and amyloid precursor protein (APP) genes has been recently suggested. This finding may provide new directions not only for investigating the role of APP in neuropathology associated with HGprt-deficiency in LND but also for the research in neurodevelopmental and neurodegenerative disorders in which the APP gene is involved in the pathogenesis of diseases and may pave the way for new strategies applicable to rational antisense drugs design. It is therefore necessary to study the HGprt enzyme and APP using expression vectors for exploring their impacts on LND as well as other human diseases, especially the ones related to APP such as Alzheimer's disease in which the physiologic function and the structure of the entire APP remain largely unclear until now. For such a purpose, we report here the construction of expression vectors as the first step (Part I) of our investigation.
Collapse
Affiliation(s)
- Khue Vu Nguyen
- Department of Medicine, Biochemical Genetics and Metabolism, The Mitochondrial and Metabolic Disease Center, School of Medicine, University of California, San Diego, San Diego, California, USA.,Department of Pediatrics, School of Medicine, University of California, San Diego, California, USA
| | - Robert K Naviaux
- Department of Medicine, Biochemical Genetics and Metabolism, The Mitochondrial and Metabolic Disease Center, School of Medicine, University of California, San Diego, San Diego, California, USA.,Department of Pediatrics, School of Medicine, University of California, San Diego, California, USA.,Department of Pathology, School of Medicine, University of California, San Diego, California, USA
| | - William L Nyhan
- Department of Pediatrics, School of Medicine, University of California, San Diego, California, USA
| |
Collapse
|
2
|
Nguyen KV, Naviaux RK, Nyhan WL. Novel mutation in the human HPRT1 gene and the Lesch-Nyhan disease. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2017; 36:704-711. [PMID: 29185864 DOI: 10.1080/15257770.2017.1395037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lesch-Nyhan disease (LND) is a rare X-linked inherited neurogenetic disorder of purine metabolism in which the enzyme, hypoxanthine-guanine phosphoribosyltransferase (HGprt) is defective. The authors report a novel point mutation that led to HGprt-related neurological dysfunction (HND) in a family in which there was a missense mutation in exon 6 of the coding region of the HPRT1 gene: g.34938G>T, c.403G>T, p.D135Y. Molecular diagnosis is consistent with the genetic heterogeneity of the HPRT1 gene responsible for HGprt deficiency. It allows fast, accurate carrier detection and genetic counseling.
Collapse
Affiliation(s)
- Khue Vu Nguyen
- a Department of Medicine, Biochemical Genetics and Metabolism, The Mitochondrial and Metabolic Disease Center, School of Medicine , University of California, San Diego , CA , USA.,b Department of Pediatrics, School of Medicine , University of California, San Diego , CA , USA
| | - Robert K Naviaux
- a Department of Medicine, Biochemical Genetics and Metabolism, The Mitochondrial and Metabolic Disease Center, School of Medicine , University of California, San Diego , CA , USA.,b Department of Pediatrics, School of Medicine , University of California, San Diego , CA , USA.,c Department of Pathology, School of Medicine , University of California, San Diego , CA , USA
| | - William L Nyhan
- b Department of Pediatrics, School of Medicine , University of California, San Diego , CA , USA
| |
Collapse
|
3
|
Nguyen KV, Silva S, Troncoso M, Naviaux RK, Nyhan WL. Lesch-Nyhan disease in two families from Chiloé Island with mutations in the HPRT1 gene. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2017; 36:452-462. [PMID: 28524722 DOI: 10.1080/15257770.2017.1315434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Lesch-Nyhan disease (LND) is a rare X-linked inherited neurogenetic disorder of purine metabolism in which the enzyme, hypoxanthine-guanine phosphoribosyltransferase (HGprt) is defective. The authors report two independent point mutations leading to splicing errors: IVS 2 +1G>A, c.134 +1G>A, and IVS 3 +1G>A, c.318 +1G>A in the hypoxanthine-phosphoribosyltransferase1 (HPRT1) gene which result in exclusion of exon 2 and exon 3 respectively, in the HGprt enzyme protein from different members of two Chiloé Island families. Molecular analysis has revealed the heterogeneity of genetic mutation of the HPRT1 gene responsible for the HGprt deficiency. It allows fast, accurate carrier detection and genetic counseling.
Collapse
Affiliation(s)
- Khue Vu Nguyen
- a Department of Medicine, Biochemical Genetics and Metabolism, The Mitochondrial and Metabolic Disease Center, School of Medicine , University of California , San Diego , California , USA.,b Department of Pediatrics , University of California, San Diego, School of Medicine , San Diego, La Jolla , California , USA
| | - Sebastian Silva
- c Child Neurology Service, Hospital de Ancud , Chiloé Island , Chile
| | - Monica Troncoso
- d Child Neurology Service, Hospital San Borja Arriarán, Universidad de Chile , Santiago , Chile
| | - Robert K Naviaux
- a Department of Medicine, Biochemical Genetics and Metabolism, The Mitochondrial and Metabolic Disease Center, School of Medicine , University of California , San Diego , California , USA.,b Department of Pediatrics , University of California, San Diego, School of Medicine , San Diego, La Jolla , California , USA.,e Department of Pathology , University of California, San Diego, School of Medicine , San Diego, La Jolla , California , USA
| | - William L Nyhan
- b Department of Pediatrics , University of California, San Diego, School of Medicine , San Diego, La Jolla , California , USA
| |
Collapse
|
4
|
Nguyen KV, Naviaux RK, Nyhan WL. Human HPRT1 gene and the Lesch-Nyhan disease: Substitution of alanine for glycine and inversely in the HGprt enzyme protein. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2017; 36:151-157. [PMID: 28045594 DOI: 10.1080/15257770.2016.1231319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lesch-Nyhan disease (LND) is a rare X-linked inherited neurogenetic disorder of purine metabolism in which the enzyme, hypoxanthine-guanine phosphoribosyltransferase (HGprt) is defective. The authors report three novel independent mutations in the coding region of the HPRT1 gene from genomic DNA of (a) a carrier sister of two male patients with LND: c.569G>C, p.G190A in exon 8; and (b) two LND affected male patients unrelated to her who had two mutations: c.648delC, p.Y216X, and c.653C>G, p.A218G in exon 9. Molecular analysis reveals the heterogeneity of genetic mutation of the HPRT1 gene responsible for the HGprt deficiency. It allows fast, accurate detection of carriers and genetic counseling.
Collapse
Affiliation(s)
- Khue Vu Nguyen
- a Department of Medicine , Biochemical Genetics and Metabolism, The Mitochondrial and Metabolic Disease Center, School of Medicine, University of California, San Diego , San Diego , CA , USA.,b Department of Pediatrics , University of California, San Diego, School of Medicine , San Diego, La Jolla , CA , USA
| | - Robert K Naviaux
- a Department of Medicine , Biochemical Genetics and Metabolism, The Mitochondrial and Metabolic Disease Center, School of Medicine, University of California, San Diego , San Diego , CA , USA.,b Department of Pediatrics , University of California, San Diego, School of Medicine , San Diego, La Jolla , CA , USA.,c Department of Pathology , University of California, San Diego, School of Medicine , San Diego, La Jolla , CA , USA
| | - William L Nyhan
- b Department of Pediatrics , University of California, San Diego, School of Medicine , San Diego, La Jolla , CA , USA
| |
Collapse
|
5
|
Nguyen KV, Nyhan WL. Mutation in the Human HPRT1 Gene and the Lesch-Nyhan Syndrome. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2016; 35:426-33. [PMID: 27379977 DOI: 10.1080/15257770.2015.1098660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lesch-Nyhan syndrome (LNS) is a rare X-linked inherited neurogenetic disorder of purine metabolism in which the enzyme, hypoxanthine-guanine phosphoribosyltransferase (HGprt) is defective. The authors report a novel mutation which led to HGprt-related neurological dysfunction (HND) in two brothers from the same family with a missense mutation in exon 6 of the coding region of the HPRT1 gene: c.437T>C, p.L146S. Molecular diagnosis discloses the genetic heterogeneity of the HPRT1 gene responsible for HGprt deficiency. It allows fast, accurate carrier detection and genetic counseling.
Collapse
Affiliation(s)
- Khue Vu Nguyen
- a Department of Medicine , Biochemical Genetics and Metabolism, The Mitochondrial and Metabolic Disease Center, School of Medicine, University of California , San Diego , California , USA.,b Department of Pediatrics , University of California, San Diego, School of Medicine , San Diego , California , USA
| | - William L Nyhan
- b Department of Pediatrics , University of California, San Diego, School of Medicine , San Diego , California , USA
| |
Collapse
|
6
|
Nguyen KV, Nyhan WL. Lesch-Nyhan Syndrome in a Family with a Deletion Followed by an Insertion within the HPRT1 Gene. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2016; 34:442-7. [PMID: 25965333 DOI: 10.1080/15257770.2015.1014492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Lesch-Nyhan syndrome (LNS) is a rare X-linked inherited neurogenetic disorder of purine metabolism in which the enzyme, hypoxanthine-guanine phosphoribosyltransferase(HGprt) is defective. The authors report a novel mutation which led to LNS in a family with a deletion followed by an insertion (INDELS) via the serial replication slippage mechanism: c.428_432delTGCAGinsAGCAAA, p.Met143Lysfs*12 in exon 6 of HPRT1 gene. Molecular diagnosis discloses the genetic heterogeneity of HPRT1 gene responsible for HGprt deficiency. It allows fast, accurate carrier detection and genetic counseling.
Collapse
Affiliation(s)
- Khue Vu Nguyen
- a Department of Medicine, Biochemical Genetics and Metabolism , The Mitochondrial and Metabolic Disease Center, School of Medicine, University of California , San Diego , California , USA
| | | |
Collapse
|
7
|
Nguyen KV. Epigenetic Regulation in Amyloid Precursor Protein with Genomic Rearrangements and the Lesch-Nyhan Syndrome. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2015; 34:674-90. [PMID: 26398526 DOI: 10.1080/15257770.2015.1071844] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Recently, epigenetic regulation of alternative APP pre-mRNA splicing in the Lesch-Nyhan syndrome (LNS) has been studied (see Ref. 7) and showed for the first time, the presence of several APP-mRNA isoforms encoding divers APP protein isoforms ranging from 120 to 770 amino acids (with or without mutations and/or deletions). Here, by continuing on this work, I identified, for the first time new APP-mRNA isoforms with a deletion followed by an insertion (INDELS) in LNS and LNVs patients: c.19_2295delinsG166TT…GAGTCC…CTTAGTC…TCT489,p.Leu7Valfs*2;c.19_2295 delinsG169TT…GAGACC…CTTGGTC…TCT492,p.Leu7Valfs*2;and c.16_2313delinsG84CC…CAT616,p.Leu7Hisfs*45. A role of genomic rearrangements of APP gene via the Fork Stalling and Template Switching (FoSTeS) mechanism leading to INDELS was suggested. Epistasis between mutated HPRT1 and APP genes could be one of the factors of epigenetic modifications responsible for genomic rearrangements of APP gene. My findings accounted for epigenetic mechanism in the regulation of alternative APP pre-mRNA splicing as well as for epigenetic control of genomic rearrangements of APP gene may provide therefore new directions not only for investigating the role of APP in neuropathology associated with HGprt-deficiency in LNS and LNVs patients but also for the research in neurodevelopmental and neurodegenerative disorders by which APP gene involved in the pathogenesis of the diseases such as autism, fragile X syndrome (FXS), and Alzheimer's disease (AD) with its diversity and complexity, especially for sporadic form of AD (SAD). An accurate quantification of various APP-mRNA isoforms in brain tissues for detection of initial pathological changes or pathology development is needed and antisense drugs are the potential treatments.
Collapse
Affiliation(s)
- Khue Vu Nguyen
- a Department of Medicine, Biochemical Genetics and Metabolism, The Mitochondrial and Metabolic Disease Center, School of Medicine, University of California, San Diego , San Diego , CA , USA.,b Department of Pediatrics, University of California, San Diego, School of Medicine, San Diego , La Jolla , CA , USA
| |
Collapse
|
8
|
Nguyen KV. Epigenetic regulation in amyloid precursor protein and the Lesch-Nyhan syndrome. Biochem Biophys Res Commun 2014; 446:1091-5. [PMID: 24680827 DOI: 10.1016/j.bbrc.2014.03.062] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 03/16/2014] [Indexed: 12/26/2022]
Abstract
Lesch-Nyhan syndrome (LNS) is a neurogenetic disorder of purine metabolism in which the enzyme, hypoxanthine-guanine phosphoribosyltransferase (HPRT) is defective. A major unsolved question is how the loss of HPRT enzyme function affects the brain to cause the neurobehavioural syndrome in LNS and its attenuated variants (LNVs). To address this issue, a search for a link between LNS and the amyloid precursor protein (APP) is developed. Here, I identified, for the first time in fibroblasts from normal subjects as well as from LNS and LNV patients: (a) several APP-mRNA isoforms encoding divers APP protein isoforms ranging from 120 to 770 amino acids (with or without mutations and/or deletions) accounted for epigenetic mechanisms in the regulation of alternative APP pre-mRNA splicing and (b) five novel independent polymorphisms in the APP promoter: -956A>G, -1023T>C, -1161A>G, -2224G>A, -2335C>T relative to the transcription start site. A role for epistasis between mutated HPRT and APP genes affecting the regulation of alternative APP pre-mRNA splicing in LNS is suggested. An accurate quantification of various APP isoforms in brain tissues for detection of initial pathological changes or pathology development is needed. My findings may provide new directions not only for investigating the role of APP in neuropathology associated with HPRT-deficiency in LNS but also for the research in neurodevelopmental and neurodegenerative disorders by which various APP isoforms involved in the pathogenesis of the diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Khue Vu Nguyen
- Department of Medicine, Biochemical Genetics and Metabolism, The Mitochondrial and Metabolic Disease Center, School of Medicine, University of California, San Diego, Building CTF, Room C-103, 214 Dickinson Street, San Diego, CA 92103-8467, USA; Department of Pediatrics, University of California, San Diego, School of Medicine, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
9
|
Nguyen KV, Nyhan WL. Identification of novel mutations in the human HPRT gene. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2013; 32:155-60. [PMID: 23473102 DOI: 10.1080/15257770.2012.742200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Inherited mutation of the purine salvage enzyme, hypoxanthine guanine phosphoribosyltransferase (HPRT) gives rise to Lesch-Nyhan syndrome (LNS) or Lesch-Nyhan variants (LNVs). We report three novel independent mutations in the coding region of HPRT gene: exon 3: c.141delA, p.D47fs53X; exon 5: c.400G>A, p.E134K; exon 7: c.499A>G, p.R167G from three LNS affected male patients.
Collapse
Affiliation(s)
- Khue Vu Nguyen
- Department of Medicine, Biochemical Genetics and Metabolism, The Mitochondrial and Metabolic Disease Center, School of Medicine, University of California, San Diego, California 92103-8467, USA.
| | | |
Collapse
|
10
|
Nguyen KV, Naviaux RK, Paik KK, Nakayama T, Nyhan WL. Lesch-Nyhan variant syndrome: real-time rt-PCR for mRNA quantification in variable presentation in three affected family members. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2013; 31:616-29. [PMID: 22908952 DOI: 10.1080/15257770.2012.714028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Inherited mutations of hypoxanthine guanine phosphoribosyltransferase (HPRT) give rise to Lesch-Nyhan syndrome (LNS) or variants (LNV). We report molecular insights from real-time RT-PCR for HPRT mRNA quantification into the mechanism by which a single mutation located in exon 7 of the HPRT gene: c.500G>T, p.R167M, led to different clinical phenotypes from three male LNV-affected patients in the same family manifesting parallel differences in enzymatic activities. This approach can be applied for understanding genotype-phenotype correlations for other human genetic diseases.
Collapse
Affiliation(s)
- Khue Vu Nguyen
- Department of Medicine, Biochemical Genetics and Metabolism, The Mitochondrial and Metabolic Disease Center, School of Medicine, University of California San Diego, San Diego, California 92103-8467, USA.
| | | | | | | | | |
Collapse
|
11
|
Nguyen KV, Naviaux RK, Paik KK, Nyhan WL. Lesch-Nyhan syndrome: mRNA expression of HPRT in patients with enzyme proven deficiency of HPRT and normal HPRT coding region of the DNA. Mol Genet Metab 2012; 106:498-501. [PMID: 22766437 DOI: 10.1016/j.ymgme.2012.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 05/31/2012] [Accepted: 06/05/2012] [Indexed: 11/23/2022]
Abstract
Inherited mutation of the purine salvage enzyme, hypoxanthine guanine phosphoribosyltransferase (HPRT) gives rise to Lesch-Nyhan syndrome (LNS) or Lesch-Nyhan variants (LNV). We report a case of two LNS affected members of a family with deficiency of activity of HPRT in intact cultured fibroblasts in whom mutation could not be found in the HPRT coding sequence but there was markedly decreased HPRT expression of mRNA.
Collapse
Affiliation(s)
- Khue Vu Nguyen
- Department of Medicine, Biochemical Genetics and Metabolism, The Mitochondrial and Metabolic Disease Center, University of California, San Diego, School of Medicine, San Diego, CA 92103-8467, USA.
| | | | | | | |
Collapse
|