Kasula M, Toyama M, Samunuri R, Jha AK, Okamoto M, Baba M, Sharon A. Pyrazolo[3,4-
d]pyrimidine-based neplanocin analogues identified as potential
de novo pharmacophores for dual-target HBV inhibition.
RSC Med Chem 2025:d4md00932k. [PMID:
39990166 PMCID:
PMC11840712 DOI:
10.1039/d4md00932k]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/16/2025] [Indexed: 02/25/2025] Open
Abstract
The discovery of selective and potent inhibitors through de novo pathways is essential to combat drug resistance in chronic hepatitis B (CHB) infections. Recent studies have highlighted that neplanocin A (NepA) derivatives are biologically selective inhibitors of the hepatitis B virus (HBV). In this study, we designed, synthesized, and evaluated various pyrazolo[3,4-d]pyrimidine-based NepA analogues (4a-h) for their anti-HBV activity. Notably, analogue 4g demonstrated significant activity against HBV replication, with EC50 (HBV DNA) = 0.96 μM, CC50 > 100 μM and EC50 (HBsAg) = 0.82 μM, showing selective inhibition of HBsAg secretion. The SAR analysis concluded that replacing the polar 4-NH2 group with -CH3 also acted as a weak H-bonding donor, and the presence of 3-iodo was found to be desirable for the activity/toxicity profile. The nucleoside analogues exhibited a distinct mechanism of action compared to existing nucleoside analogues for the selective inhibition of HBsAg secretion. Based on these findings, compound 4g represents a promising lead molecule for the development of new anti-HBV agents with unique mechanisms of action.
Collapse