1
|
El Saftawy EA, Aboulhoda BE, Hassan FE, Ismail MAM, Alghamdi MA, Hussein SM, Amin NM. ACV with/without IVM: a new talk on intestinal CDX2 and muscular CD34 and Cyclin D1 during Trichinella spiralis infection. Helminthologia 2024; 61:124-141. [PMID: 39040803 PMCID: PMC11260317 DOI: 10.2478/helm-2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/25/2024] [Indexed: 07/24/2024] Open
Abstract
The current study assessed the efficacy of Acyclovir (ACV) and Ivermectin (IVM) as monotherapies and combined treatments for intestinal and muscular stages of Trichinella spiralis infection. One-hundred Swiss albino mice received orally 250 ± 50 infectious larvae and were divided into infected-untreated (Group-1), IVM-treated (Group-2), ACV-treated (Group-3), combined IVM+ACV (Group-4), and healthy controls (Group-5). Each group was subdivided into subgroup-A-enteric phase (10 mice, sacrificed day-7 p.i.) and subgroup-B-muscular phase (10 mice, sacrificed day-35 p.i.). Survival rate and body weight were recorded. Parasite burden and intestinal histopathology were assessed. In addition, immunohistochemical expression of epithelial CDX2 in the intestinal phase and CyclinD1 as well as CD34 in the muscular phase were evaluated. Compared, IVM and ACV monotherapies showed insignificant differences in the amelioration of enteric histopathology, except for lymphocytic counts. In the muscle phase, monotherapies showed variable disruptions in the encapsulated larvae. Compared with monotherapies, the combined treatment performed relatively better improvement of intestinal inflammation and reduction in the enteric and muscular parasite burden. CDX2 and CyclinD1 positively correlated with intestinal inflammation and parasite burden, while CD34 showed a negative correlation. CDX2 positively correlated with CyclinD1. CD34 negatively correlated with CDX2 and CyclinD1. IVM +ACV significantly ameliorated CDX2, CyclinD1, and CD34 expressions compared with monotherapies. Conclusion. T. spiralis infection-associated inflammation induced CDX2 and CyclinD1 expressions, whereas CD34 was reduced. The molecular tumorigenic effect of the nematode remains questionable. Nevertheless, IVM +ACV appeared to be a promising anthelminthic anti-inflammatory combination that, in parallel, rectified CDX2, CyclinD1, and CD34 expressions.
Collapse
Affiliation(s)
- E. A. El Saftawy
- Medical Parasitology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Medical Parasitology Department, Armed Forces College of Medicine, Cairo, Egypt
| | - B. E. Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - F. E. Hassan
- Medical Physiology Department, Kasr Alainy, Faculty of Medicine, Cairo University, Giza11562, Egypt
- General Medicine Practice Program, Department of Physiology, Batterjee Medical College, Jeddah21442, Saudi Arabia
| | - M. A. M. Ismail
- Medical Parasitology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - M. A. Alghamdi
- College of Medicine, King Khalid University, Abha62529, Saudi Arabia
- Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha62529, Saudi Arabia
| | - S. M. Hussein
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - N. M. Amin
- Medical Parasitology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Tanvir R, Ijaz S, Sajid I, Hasnain S. Multifunctional in vitro, in silico and DFT analyses on antimicrobial BagremycinA biosynthesized by Micromonospora chokoriensis CR3 from Hieracium canadense. Sci Rep 2024; 14:10976. [PMID: 38745055 PMCID: PMC11093986 DOI: 10.1038/s41598-024-61490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Among the actinomycetes in the rare genera, Micromonospora is of great interest since it has been shown to produce novel therapeutic compounds. Particular emphasis is now on its isolation from plants since its population from soil has been extensively explored. The strain CR3 was isolated as an endophyte from the roots of Hieracium canadense, and it was identified as Micromonospora chokoriensis through 16S gene sequencing and phylogenetic analysis. The in-vitro analysis of its extract revealed it to be active against the clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and Candida tropicalis (15 mm). No bioactivity was observed against Gram-negative bacteria, Escherichia coli ATCC 25922, and Klebsiella pneumoniae ATCC 706003. The Micromonospora chokoriensis CR3 extract was also analyzed through the HPLC-DAD-UV-VIS resident database, and it gave a maximum match factor of 997.334 with the specialized metabolite BagremycinA (BagA). The in-silico analysis indicated that BagA strongly interacted with the active site residues of the sterol 14-α demethylase and thymidylate kinase enzymes, with the lowest binding energies of - 9.7 and - 8.3 kcal/mol, respectively. Furthermore, the normal mode analysis indicated that the interaction between these proteins and BagA was stable. The DFT quantum chemical properties depicted BagA to be reasonably reactive with a HOMO-LUMO gap of (ΔE) of 4.390 eV. BagA also passed the drug-likeness test with a synthetic accessibility score of 2.06, whereas Protox-II classified it as a class V toxicity compound with high LD50 of 2644 mg/kg. The current study reports an endophytic actinomycete, M. chokoriensis, associated with H. canadense producing the bioactive metabolite BagA with promising antimicrobial activity, which can be further modified and developed into a safe antimicrobial drug.
Collapse
Affiliation(s)
- Rabia Tanvir
- Institute of Microbiology (IOM), University of Veterinary and Animal Sciences (UVAS), Lahore, 54000, Punjab, Pakistan.
| | - Saadia Ijaz
- Department of Microbiology and Molecular Genetics, The Women University, Multan, 66000, Punjab, Pakistan
| | - Imran Sajid
- Institute of Microbiology and Molecular Genetics (IMMG), University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Punjab, Pakistan
| | - Shahida Hasnain
- Institute of Microbiology and Molecular Genetics (IMMG), University of the Punjab, Quaid-e-Azam Campus, Lahore, 54590, Punjab, Pakistan
| |
Collapse
|
3
|
Sanahuja I, Ruiz A, Firmino JP, Reyes-López FE, Ortiz-Delgado JB, Vallejos-Vidal E, Tort L, Tovar-Ramírez D, Cerezo IM, Moriñigo MA, Sarasquete C, Gisbert E. Debaryomyces hansenii supplementation in low fish meal diets promotes growth, modulates microbiota and enhances intestinal condition in juvenile marine fish. J Anim Sci Biotechnol 2023; 14:90. [PMID: 37422657 DOI: 10.1186/s40104-023-00895-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/11/2023] [Indexed: 07/10/2023] Open
Abstract
BACKGROUND The development of a sustainable business model with social acceptance, makes necessary to develop new strategies to guarantee the growth, health, and well-being of farmed animals. Debaryomyces hansenii is a yeast species that can be used as a probiotic in aquaculture due to its capacity to i) promote cell proliferation and differentiation, ii) have immunostimulatory effects, iii) modulate gut microbiota, and/or iv) enhance the digestive function. To provide inside into the effects of D. hansenii on juveniles of gilthead seabream (Sparus aurata) condition, we integrated the evaluation of the main key performance indicators coupled with the integrative analysis of the intestine condition, through histological and microbiota state, and its transcriptomic profiling. RESULTS After 70 days of a nutritional trial in which a diet with low levels of fishmeal (7%) was supplemented with 1.1% of D. hansenii (17.2 × 105 CFU), an increase of ca. 12% in somatic growth was observed together with an improvement in feed conversion in fish fed a yeast-supplemented diet. In terms of intestinal condition, this probiotic modulated gut microbiota without affecting the intestine cell organization, whereas an increase in the staining intensity of mucins rich in carboxylated and weakly sulphated glycoconjugates coupled with changes in the affinity for certain lectins were noted in goblet cells. Changes in microbiota were characterized by the reduction in abundance of several groups of Proteobacteria, especially those characterized as opportunistic groups. The microarrays-based transcriptomic analysis found 232 differential expressed genes in the anterior-mid intestine of S. aurata, that were mostly related to metabolic, antioxidant, immune, and symbiotic processes. CONCLUSIONS Dietary administration of D. hansenii enhanced somatic growth and improved feed efficiency parameters, results that were coupled to an improvement of intestinal condition as histochemical and transcriptomic tools indicated. This probiotic yeast stimulated host-microbiota interactions without altering the intestinal cell organization nor generating dysbiosis, which demonstrated its safety as a feed additive. At the transcriptomic level, D. hansenii promoted metabolic pathways, mainly protein-related, sphingolipid, and thymidylate pathways, in addition to enhance antioxidant-related intestinal mechanisms, and to regulate sentinel immune processes, potentiating the defensive capacity meanwhile maintaining the homeostatic status of the intestine.
Collapse
Affiliation(s)
- Ignasi Sanahuja
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, 43540, Spain
| | - Alberto Ruiz
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, 43540, Spain
| | - Joana P Firmino
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, 43540, Spain
| | - Felipe E Reyes-López
- Centro de Biotecnología Acuícola, Universidad de Santiago de Chile, Santiago, Chile
| | - Juan B Ortiz-Delgado
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Avda. República Saharaui nº 2, Campus Universitario Río San Pedro, Puerto Real, Cádiz, 11510, Spain
| | - Eva Vallejos-Vidal
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Lluis Tort
- Department of Cell Biology, Physiology, and Immunology, Universitat Autonoma de Barcelona, Barcelona, Spain
| | | | - Isabel M Cerezo
- Department of Microbiology, Instituto de Biotecnología Y Desarrollo Azul (IBYDA), Faculty of Sciences, University of Malaga, 29010, Malaga, Spain
- SCBI, Bioinformatic Unit, University of Malaga, 29590, Malaga, Spain
| | - Miguel A Moriñigo
- Department of Microbiology, Instituto de Biotecnología Y Desarrollo Azul (IBYDA), Faculty of Sciences, University of Malaga, 29010, Malaga, Spain
| | - Carmen Sarasquete
- Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Avda. República Saharaui nº 2, Campus Universitario Río San Pedro, Puerto Real, Cádiz, 11510, Spain
| | - Enric Gisbert
- Aquaculture Program, Institute of Agrifood Research and Technology (IRTA), La Ràpita, 43540, Spain.
| |
Collapse
|
4
|
El-Shoukrofy MS, Atta A, Fahmy S, Sriram D, Mahran MA, Labouta IM. New tetrahydropyrimidine-1,2,3-triazole clubbed compounds: Antitubercular activity and Thymidine Monophosphate Kinase (TMPKmt) inhibition. Bioorg Chem 2023; 131:106312. [PMID: 36528922 DOI: 10.1016/j.bioorg.2022.106312] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/15/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Two series of new tetrahydropyrimidine (THPM)-1,2,3-triazole clubbed compounds were designed, synthesized and screened for their antitubercular (anti-TB) activity against M. tuberculosis H37Rv strain using microplate alamar blue assay (MABA). The most active compounds 5c, 5d, 5e and 5f were further examined for their cytotoxicity against the growth of RAW 264.7 mouse macrophage cells using MTT assay. The four compounds showed safety profiles better than or comparable to that of ethambutol (EMB). These compounds were evaluated for their inhibition activity against mycobacterium tuberculosis thymidine monophosphate kinase (TMPKmt). Compounds 5c and 5e were the most potent exhibiting comparable inhibition activity to that of the natural substrate deoxythymidine monophosphate (dTMP). An in silico study was performed including docking of the most active compounds 5c and 5e into the TMPKmt (PDB: ID 1G3U) binding pocket in addition to prediction of their physicochemical and pharmacokinetic properties to explore the overall activity of these anti-TB candidates. Compounds 5c and 5e are promising anti-TB agents and TMPKmt inhibitors with acceptable oral bioavailability, physicochemical and pharmacokinetic properties.
Collapse
Affiliation(s)
- Mai S El-Shoukrofy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt.
| | - Amal Atta
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Salwa Fahmy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Dharmarajan Sriram
- Medicinal Chemistry Research Laboratory, Pharmacy Group, Birla Institute of Technology and Science, Pilani 33031, India
| | - Mona A Mahran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Ibrahim M Labouta
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| |
Collapse
|
5
|
Hu Frisk J, Pejler G, Eriksson S, Wang L. Heavy metal tolerance of Mesorhizobium delmotii thymidylate kinase. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:1305-1317. [PMID: 35345982 DOI: 10.1080/15257770.2022.2055059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Metal ions play an important role in many metabolic processes in all living organisms. At low concentrations, heavy metals such as Fe2+, Cu2+ and Zn2+ are essential cofactors for many enzymes. However, at high concentrations they are toxic. Mesorhizobium species belong to the class α-proteobacteria and have high tolerance to soil acidity, salinity, temperature extremes, and metallicolous conditions. To identify factors responsible for this tolerance we have studied the effects of metal ions on Mesorhizobium delmotii thymidylate kinase (MdTMPK), an essential enzyme in the synthesis of dTTP, thus being vital for cell growth. We show that Mg2+ and Mn2+ are the divalent metal ions required for catalysis and that Mn2+ gives the highest catalytic efficiency. MdTMPK activity in the presence of Mg2+ was strongly inhibited by the co-presence of Zn2+, Ni2+ and Co2+. However, the addition of Cs+ caused >2-fold enhanced MdTMPK activity. For TMPK from Bacilus anthracis and humans, the effects of Mg2+ and Mn2+ were similar, whereas the effects of other divalent metal ions were different, and no stimulatory effect of Cs+ was observed. Together, our results demonstrate that MdTMPK and BaTMPK function well in the presence of high concentrations of heavy metal ions, introducing a potential contribution of these enzymes to the heavy metal tolerance of Mesorhizobium delmotii and Bacillus anthracis.
Collapse
Affiliation(s)
- Junmei Hu Frisk
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gunnar Pejler
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Staffan Eriksson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Liya Wang
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
6
|
Frisk JH, Örn S, Pejler G, Eriksson S, Wang L. Differential expression of enzymes in thymidylate biosynthesis in zebrafish at different developmental stages: implications for dtymk mutation-caused neurodegenerative disorders. BMC Neurosci 2022; 23:19. [PMID: 35346037 PMCID: PMC8962455 DOI: 10.1186/s12868-022-00704-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/14/2022] [Indexed: 11/15/2022] Open
Abstract
Background Deoxythymidine triphosphate (dTTP) is an essential building block of DNA, and defects in enzymes involved in dTTP synthesis cause neurodegenerative disorders. For instance, mutations in DTYMK, the gene coding for thymidylate kinase (TMPK), cause severe microcephaly in human. However, the mechanism behind this is not well-understood. Here we used the zebrafish model and studied (i) TMPK, an enzyme required for both the de novo and the salvage pathways of dTTP synthesis, and (ii) thymidine kinases (TK) of the salvage pathway in order to understand their role in neuropathology. Results Our findings reveal that maternal-stored dNTPs are only sufficient for 6 cell division cycles, and the levels of dNTPs are inversely correlated to cell cycle length during early embryogenesis. TMPK and TK activities are prominent in the cytosol of embryos, larvae and adult fish and brain contains the highest TMPK activity. During early development, TMPK activity increased gradually from 6 hpf and a profound increase was observed at 72 hpf, and TMPK activity reached its maximal level at 96 hpf, and remained at high level until 144 hpf. The expression of dtymk encoded Dtymk protein correlated to its mRNA expression and neuronal development but not to the TMPK activity detected. However, despite the high TMPK activity detected at later stages of development, the Dtymk protein was undetectable. Furthermore, the TMPK enzyme detected at later stages showed similar biochemical properties as the Dtymk enzyme but was not recognized by the Dtymk specific antibody. Conclusions Our results suggest that active dNTP synthesis in early embryogenesis is vital and that Dtymk is essential for neurodevelopment, which is supported by a recent study of dtymk knockout zebrafish with neurological disorder and lethal outcomes. Furthermore, there is a novel TMPK-like enzyme expressed at later stages of development. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-022-00704-0.
Collapse
|
7
|
Hu Frisk J, Pejler G, Eriksson S, Wang L. Structural and functional analysis of human thymidylate kinase isoforms. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:321-332. [PMID: 34994281 DOI: 10.1080/15257770.2021.2023748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Thymidylate kinase (TMPK) phosphorylates deoxythymidine monophosphate (dTMP) and plays an important role in genome stability. Deficiency in TMPK activity due to genetic alterations of DTYMK, i.e., the gene coding for TMPK, causes severe microcephaly in humans. However, no defects were observed in other tissues, suggesting the existence of a compensatory enzyme for dTTP synthesis. In search for this compensatory enzyme we analyzed 6 isoforms of TMPK mRNA deposited in the GenBank. Of these, only isoform 1 has been characterized and represents the known human TMPK. Our results reveal that isoform 2, 3, 4 and 5 lack essential structural elements for substrate binding and, thus, they are considered as nonfunctional isoforms. Isoform 6, however, has intact catalytic centers, i.e., dTMP-binding, DRX motif, ATP-binding p-loop and lid region, which are the key structural elements of an active TMPK, suggesting that isoform 6 may function as TMPK. When isoform 6 was expressed and purified, it showed only minimal activity (<0.1%) as compared with isoform 1. A putative isoform 6 was detected in a cancer cell line, in addition to the dominant isoform 1. However, because of its low activity, isoform 6 is unlikely be able to compensate for the loss of TMPK activity caused by deletions and/or point mutations of the DTYMK gene. Thereby, future studies to identify and characterize the compensatory TMPK enzyme found in patients with DTYMK mutations may contribute to the understanding of dTTP synthesis and of the pathophysiological role of DTYMK mutations in neurodegenerative disorders.
Collapse
Affiliation(s)
- Junmei Hu Frisk
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gunnar Pejler
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Staffan Eriksson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Liya Wang
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
8
|
Frisk J, Vanoevelen JM, Bierau J, Pejler G, Eriksson S, Wang L. Biochemical Characterizations of Human TMPK Mutations Identified in Patients with Severe Microcephaly: Single Amino Acid Substitutions Impair Dimerization and Abolish Their Catalytic Activity. ACS OMEGA 2021; 6:33943-33952. [PMID: 34926941 PMCID: PMC8679000 DOI: 10.1021/acsomega.1c05288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Deoxythymidylate kinase (TMPK) is a key enzyme in the synthesis of deoxythymidine triphosphate (dTTP). Four TMPK variants (P81L, A99T, D128N, and a frameshift) have been identified in human patients who suffered from severe neurodegenerative diseases. However, the impact of these mutations on TMPK function has not been clarified. Here we show that in fibroblasts derived from a patient, the P81L and D128N mutations led to a complete loss of TMPK activity in mitochondria and extremely low and unstable TMPK activity in cytosol. Despite the lack of TMPK activity, the patient-derived fibroblasts apparently grew normal. To investigate the impact of the mutations on the enzyme function, the mutant TMPKs were expressed, purified, and characterized. The wild-type TMPK mainly exists as a dimer with high substrate binding affinity, that is, low K M value and high catalytic efficiency, that is, k cat/K M. In contrast, all mutants were present as monomers with dramatically reduced substrate binding affinity and catalytic efficiencies. Based on the human TMPK structure, none of the mutated amino acids interacted directly with the substrates. By structural analysis, we could explain why the respective amino acid substitutions could drastically alter the enzyme structure and catalytic function. In conclusion, TMPK mutations identified in patients represent loss of function mutations but surprisingly the proliferation rate of the patient-derived fibroblasts was normal, suggesting the existence of an alternative and hitherto unknown compensatory TMPK-like enzyme for dTTP synthesis. Further studies of the TMPK enzymes will help to elucidate the role of TMPK in neuropathology.
Collapse
Affiliation(s)
- Junmei
Hu Frisk
- Department
of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden
| | - Jo M. Vanoevelen
- Department
of Clinical Genetics, Maastricht University
Medical Centre+ and GROW School for Oncology and Developmental Biology, Maastricht 6202 AZ, The Netherlands
| | - Jörgen Bierau
- Department
of Clinical Genetics, Maastricht University
Medical Centre+ and GROW School for Oncology and Developmental Biology, Maastricht 6202 AZ, The Netherlands
| | - Gunnar Pejler
- Department
of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden
- Department
of Medical Biochemistry and Microbiology, Uppsala University, Uppsala SE-750 07, Sweden
| | - Staffan Eriksson
- Department
of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden
| | - Liya Wang
- Department
of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden
| |
Collapse
|