1
|
En A, Watanabe K, Ayusawa D, Fujii M. The key role of a basic domain of histone H2B N-terminal tail in the action of 5-bromodeoxyuridine to induce cellular senescence. FEBS J 2023; 290:692-711. [PMID: 35882390 DOI: 10.1111/febs.16584] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 06/28/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023]
Abstract
5-Bromodeoxyuridine (BrdU), a thymidine analogue, is an interesting reagent that modulates various biological phenomena. BrdU, upon incorporation into DNA, causes destabilized nucleosome positioning which leads to changes in heterochromatin organization and gene expression in cells. We have previously shown that BrdU effectively induces cellular senescence, a phenomenon of irreversible growth arrest in mammalian cells. Identification of the mechanism of action of BrdU would provide a novel insight into the molecular mechanisms of cellular senescence. Here, we showed that a basic domain in the histone H2B N-terminal tail, termed the HBR (histone H2B repression) domain, is involved in the action of BrdU. Notably, deletion of the HBR domain causes destabilized nucleosome positioning and derepression of gene expression, as does BrdU. We also showed that the genes up-regulated by BrdU significantly overlapped with those by deletion of the HBR domain, the result of which suggested that BrdU and deletion of the HBR domain act in a similar way. Furthermore, we showed that decreased HBR domain function induced cellular senescence or facilitated the induction of cellular senescence. These findings indicated that the HBR domain is crucially involved in the action of BrdU, and also suggested that disordered nucleosome organization may be involved in the induction of cellular senescence.
Collapse
Affiliation(s)
- Atsuki En
- Graduate School of Nanobioscience, Yokohama City University, Japan
| | - Kazuaki Watanabe
- Graduate School of Nanobioscience, Yokohama City University, Japan
| | - Dai Ayusawa
- Graduate School of Nanobioscience, Yokohama City University, Japan
| | - Michihiko Fujii
- Graduate School of Nanobioscience, Yokohama City University, Japan
| |
Collapse
|
2
|
Ohara Y, Ozeki Y, Tateishi Y, Mashima T, Arisaka F, Tsunaka Y, Fujiwara Y, Nishiyama A, Yoshida Y, Kitadokoro K, Kobayashi H, Kaneko Y, Nakagawa I, Maekura R, Yamamoto S, Katahira M, Matsumoto S. Significance of a histone-like protein with its native structure for the diagnosis of asymptomatic tuberculosis. PLoS One 2018; 13:e0204160. [PMID: 30359374 PMCID: PMC6201868 DOI: 10.1371/journal.pone.0204160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/03/2018] [Indexed: 12/15/2022] Open
Abstract
Tuberculosis causes the highest mortality among all single infections. Asymptomatic tuberculosis, afflicting one third of the global human population, is the major source as 5–10% of asymptomatic cases develop active tuberculosis during their lifetime. Thus it is one of important issues to develop diagnostic tools for accurately detecting asymptomatic infection. Mycobacterial DNA-binding protein 1 (MDP1) is a major protein in persistent Mycobacterium tuberculosis and has potential for diagnostic use in detecting asymptomatic infection. However, a previous ELISA-based study revealed a specificity problem; IgGs against MDP1 were detected in both M. tuberculosis-infected and uninfected individuals. Although the tertiary structures of an antigen are known to influence antibody recognition, the MDP1 structural details have not yet been investigated. The N-terminal half of MDP1, homologous to bacterial histone-like protein HU, is predicted to be responsible for DNA-binding, while the C-terminal half is assumed as totally intrinsically disordered regions. To clarify the relationship between the MDP1 tertiary structure and IgG recognition, we refined the purification method, which allow us to obtain a recombinant protein with the predicted structure. Furthermore, we showed that an IgG-ELISA using MDP1 purified by our refined method is indeed useful in the detection of asymptomatic tuberculosis.
Collapse
Affiliation(s)
- Yukiko Ohara
- Department of Bacteriology, Niigata University School of Medicine, Niigata, Japan
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
- * E-mail: (YOh); (YOz); (SM)
| | - Yuriko Ozeki
- Department of Bacteriology, Niigata University School of Medicine, Niigata, Japan
- * E-mail: (YOh); (YOz); (SM)
| | - Yoshitaka Tateishi
- Department of Bacteriology, Niigata University School of Medicine, Niigata, Japan
| | - Tsukasa Mashima
- Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Fumio Arisaka
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Yasuo Tsunaka
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Japan
| | - Yoshie Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, Japan
| | - Akihito Nishiyama
- Department of Bacteriology, Niigata University School of Medicine, Niigata, Japan
| | - Yutaka Yoshida
- Department of Structural Pathology, Institute of Nephrology, Graduate School of Medicine, Niigata University, Niigata, Japan
| | - Kengo Kitadokoro
- Graduate School of Science and Technology, Department of Biomolecular Engineering, Kyoto Institute of Technology, Matsugasakigosyokaido-cho, Sakyo-ku, Kyoto, Japan
| | - Haruka Kobayashi
- Department of Bacteriology, Niigata University School of Medicine, Niigata, Japan
| | - Yukihiro Kaneko
- Department of Bacteriology and Virology, Osaka-City University Graduate School of Medicine, Osaka, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Ryoji Maekura
- Department of Respiratory Medicine, National Hospital Organization Toneyama National Hospital, 5-1-1 Toneyama, Toyonaka, Osaka, Japan
- Graduate School of Health Care Sciences, Jikei Institute, Osaka, Japan
| | - Saburo Yamamoto
- Central Laboratory, Japan BCG Laboratory, Kiyose-shi, Tokyo, Japan
| | - Masato Katahira
- Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Sohkichi Matsumoto
- Department of Bacteriology, Niigata University School of Medicine, Niigata, Japan
- * E-mail: (YOh); (YOz); (SM)
| |
Collapse
|
3
|
Tabe Y, Kawase Y, Miyake K, Satoh N, Aritaka N, Isobe Y, Oshimi K, Komatsu N, Miida T, Ohsaka A. Identification of Bcl-2/IgH fusion sequences using real-time PCR and chip-based microcapillary electrophoresis. Clin Chem Lab Med 2011; 49:809-15. [DOI: 10.1515/cclm.2011.141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Hadjifrangiskou M, Koehler TM. Intrinsic curvature associated with the coordinately regulated anthrax toxin gene promoters. MICROBIOLOGY-SGM 2008; 154:2501-2512. [PMID: 18667583 DOI: 10.1099/mic.0.2007/016162-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The current model for virulence gene regulation in Bacillus anthracis involves several trans-acting factors, the most important of which appears to be the anthrax toxin activator encoded by the atxA gene. AtxA is a positive regulator of the toxin genes pagA, cya and lef, and of a number of other plasmid- and chromosome-encoded genes. The AtxA protein (56 kDa) possesses a predicted winged-helix DNA-binding domain and phosphotransferase system-regulated domains, but the mechanism for positive regulation of AtxA target genes is not known. Sequence similarities in the promoter regions of AtxA-regulated genes are not apparent, and recombinant AtxA binds DNA with a high affinity in a non-specific manner. We hypothesized that the toxin genes possess common structural features or cis-acting elements that are required for positive regulation. We employed deletion analyses to determine the minimal sequences required for atxA-mediated toxin gene expression. In silico modelling and in vitro experiments using double-stranded DNA corresponding to the toxin gene promoter regions indicated significant curvature associated with these regions. These findings suggest that the structural topology of the DNA plays an important role in the control of anthrax toxin gene expression.
Collapse
Affiliation(s)
- Maria Hadjifrangiskou
- Department of Microbiology and Molecular Genetics, University of Texas - Houston Health Science Center, 6431 Fannin St, Houston, TX 77030, USA
| | - Theresa M Koehler
- Department of Microbiology and Molecular Genetics, University of Texas - Houston Health Science Center, 6431 Fannin St, Houston, TX 77030, USA
| |
Collapse
|
5
|
Abstract
The study of insect satellite DNAs (satDNAs) indicates the evolutionary conservation of certain features despite their sequence heterogeneity. Such features can include total length, monomer length, motifs, particular regions and/or secondary and tertiary structures. satDNAs may act as protein-binding sites, structural domains or sites for epigenetic modifications. The selective constraints in the evolution of satDNAs may be due to the satDNA sequence interaction with specific proteins important in heterochromatin formation and possible a role in controlling gene expression. The transcription of satDNA has been described in vertebrates, invertebrates and plants. In insects, differential satDNA expression has been observed in different cells, developmental stages, sex and caste of the individuals. These transcription differences may suggest their involvement in gene-regulation processes. In addition, the satDNA or its transcripts appear to be involved in heterochromatin formation and in chromatin-elimination processes. The importance of transposable elements to insect satDNA is shown by their presence as a constituent of satDNA in several species of insects (including possible active elements). In addition, they may be involved in the formation of centromeres and telomeres and in the homogenization and expansion of satDNA.
Collapse
Affiliation(s)
- T Palomeque
- Departamento de Biología Experimental, Area de Genética, Universidad de Jaén, Jaén, Spain.
| | | |
Collapse
|
6
|
5-Bromouracil disrupts nucleosome positioning by inducing A-form-like DNA conformation in yeast cells. Biochem Biophys Res Commun 2008; 368:662-9. [PMID: 18258180 DOI: 10.1016/j.bbrc.2008.01.149] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 01/26/2008] [Indexed: 11/23/2022]
Abstract
5-Bromodeoxyuridine (BrdU) modulates expression of particular genes associated with cellular differentiation and senescence. Our previous studies have suggested an involvement of chromatin structure in this phenomenon. Here, we examined the effect of 5-bromouracil on nucleosome positioning in vivo using TALS plasmid in yeast cells. This plasmid can stably and precisely be assembled nucleosomes aided by the alpha2 repressor complex bound to its alpha2 operator. Insertion of AT-rich sequences into a site near the operator destabilized nucleosome positioning dependent on their length and sequences. Addition of BrdU almost completely disrupted nucleosome positioning through specific AT-tracts. The effective AT-rich sequences migrated faster on polyacrylamide gel electrophoresis, and their mobility was further accelerated by substitution of thymine with 5-bromouracil. Since this property is indicative of a rigid conformation of DNA, our results suggest that 5-bromouracil disrupts nucleosome positioning by inducing A-form-like DNA.
Collapse
|