1
|
Chilton B, Roach RJ, Edwards PJB, Jameson GB, Hale TK, Filichev VV. Inverted strand polarity yields thermodynamically stable G-quadruplexes and prevents duplex formation within extended DNA. Chem Sci 2024:d3sc05432b. [PMID: 39246343 PMCID: PMC11376080 DOI: 10.1039/d3sc05432b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
DNA G-quadruplexes (G4) formed in guanine-rich sequences play a key role in genome function and maintenance, interacting with multiple proteins. However, structural and functional studies of G4s within duplex DNA have been challenging because of the transient nature of G4s and thermodynamic preference of G-rich DNA to form duplexes with their complementary strand rather than G4s. To overcome these challenges, we have incorporated native nucleotides in G-rich sequences using commercially available inverted 3'-O-DMT-5'-O-phosphoramidites of native nucleosides, to give 3'-3' and 5'-5' linkages in the centre of the G-tract. Using circular dichroism and 1H nuclear magnetic resonance spectroscopies and native gel electrophoresis, we demonstrate that these polarity-inverted DNA sequences containing four telomeric repeats form G4s of parallel topology with one lateral or diagonal loop across the face of the quadruplex and two propeller loops across the edges of the quadruplex. These G4s were stable even in the presence of complementary C-rich DNA. As an example, G4 assemblies of inverted polarity were shown to bind to the hinge region of Heterochromatin Protein 1α (HP1α), a known G4-interacting domain. As such, internal polarity inversions in DNA provide a useful tool to control G4 topology while also disrupting the formation of other secondary structures, particularly the canonical duplex.
Collapse
Affiliation(s)
- Bruce Chilton
- School of Food Technology and Natural Sciences, Massey University Private Bag 11-222 Palmerston North 4442 New Zealand
| | - Ruby J Roach
- School of Food Technology and Natural Sciences, Massey University Private Bag 11-222 Palmerston North 4442 New Zealand
| | - Patrick J B Edwards
- School of Food Technology and Natural Sciences, Massey University Private Bag 11-222 Palmerston North 4442 New Zealand
| | - Geoffrey B Jameson
- School of Food Technology and Natural Sciences, Massey University Private Bag 11-222 Palmerston North 4442 New Zealand
| | - Tracy K Hale
- School of Food Technology and Natural Sciences, Massey University Private Bag 11-222 Palmerston North 4442 New Zealand
| | - Vyacheslav V Filichev
- School of Food Technology and Natural Sciences, Massey University Private Bag 11-222 Palmerston North 4442 New Zealand
| |
Collapse
|
2
|
Yu H, Zhu J, Shen G, Deng Y, Geng X, Wang L. Improving aptamer performance: key factors and strategies. Mikrochim Acta 2023; 190:255. [PMID: 37300603 DOI: 10.1007/s00604-023-05836-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Aptamers are functional single-stranded oligonucleotide fragments isolated from randomized libraries by Systematic Evolution of Ligands by Exponential Enrichment (SELEX), exhibiting excellent affinity and specificity toward targets. Compared with traditional antibody reagents, aptamers display many desirable properties, such as low variation and high flexibility, and they are suitable for artificial and large-scale synthesis. These advantages make aptamers have a broad application potential ranging from biosensors, bioimaging to therapeutics and other areas of application. However, the overall performance of aptamer pre-selected by SELEX screening is far from being satisfactory. To improve aptamer performance and applicability, various post-SELEX optimization methods have been developed in the last decade. In this review, we first discuss the key factors that influence the performance or properties of aptamers, and then we summarize the key strategies of post-SELEX optimization which have been successfully used to improve aptamer performance, such as truncation, extension, mutagenesis and modification, splitting, and multivalent integration. This review shall provide a comprehensive summary and discussion of post-SELEX optimization methods developed in recent years. Moreover, by discussing the mechanism of each approach, we highlight the importance of choosing the proper method to perform post-SELEX optimization.
Collapse
Affiliation(s)
- Hong Yu
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Shanghai Jiao Tong University YunNan (Dali) Research Institute, Dali, 671000, Yunnan, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Jiangxiong Zhu
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Shanghai Jiao Tong University YunNan (Dali) Research Institute, Dali, 671000, Yunnan, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Guoqing Shen
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Shanghai Jiao Tong University YunNan (Dali) Research Institute, Dali, 671000, Yunnan, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Yun Deng
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Shanghai Jiao Tong University YunNan (Dali) Research Institute, Dali, 671000, Yunnan, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Xueqing Geng
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Shanghai Jiao Tong University YunNan (Dali) Research Institute, Dali, 671000, Yunnan, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Lumei Wang
- School of Agriculture and Biology, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- Shanghai Jiao Tong University YunNan (Dali) Research Institute, Dali, 671000, Yunnan, China.
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd, Shanghai, 200240, China.
- Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd, Shanghai, 200240, China.
| |
Collapse
|
3
|
Kosman J, Juskowiak B. Thrombin-Binding Aptamer with Inversion of Polarity Sites (IPS): Effect on DNAzyme Activity and Anticoagulant Properties. Int J Mol Sci 2021; 22:ijms22157902. [PMID: 34360665 PMCID: PMC8347255 DOI: 10.3390/ijms22157902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 01/26/2023] Open
Abstract
In this work we examined the properties of thrombin-binding aptamer (TBA) modified by the introduction of inversion of polarity sites (IPS) in order to assess the effect of modification on the activation of TBA to serve as DNAzyme with peroxidase-like activity. Two oligonucleotides were designed to possess one (IPS1) or three (IPS2) inversion sites. TBA typically forms antiparallel G-quadruplexes with two G-tetrads, which exhibits very low DNAzyme peroxidise activity. DNAzyme activity is generally attributed to parallel G-quadruplexes. Hence, inversion of polarity was introduced in the TBA molecule to force the change of G-quadruplex topology. All oligonucleotides were characterized using circular dichroism and UV-Vis melting profiles. Next, the activity of the DNAzymes formed by studied oligonucleotides and hemin was investigated. The enhancement of peroxidase activity was observed when inversion of polarity was introduced. DNAzyme based on IPS2 showed the highest peroxidase activity in the presence of K+ or NH4+ ions. This proves that inversion of polarity can be used to convert a low-activity DNAzyme into a DNAzyme with high activity. Since TBA is known for its anticoagulant properties, the relevant experiments with IPS1 and IPS2 oligonucleotides were performed. Both IPS1 and IPS2 retain some anticoagulant activity in comparison to TBA in the reaction with fibrinogen. Additionally, the introduction of inversion of polarity makes these oligonucleotides more resistant to nucleases.
Collapse
|
4
|
Riccardi C, Napolitano E, Platella C, Musumeci D, Montesarchio D. G-quadruplex-based aptamers targeting human thrombin: Discovery, chemical modifications and antithrombotic effects. Pharmacol Ther 2020; 217:107649. [PMID: 32777331 DOI: 10.1016/j.pharmthera.2020.107649] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
First studies on thrombin-inhibiting DNA aptamers were reported in 1992, and since then a large number of anticoagulant aptamers has been discovered. TBA - also named HD1, a 15-mer G-quadruplex (G4)-forming oligonucleotide - is the best characterized thrombin binding aptamer, able to specifically recognize the protein exosite I, thus inhibiting the conversion of soluble fibrinogen into insoluble fibrin strands. Unmodified nucleic acid-based aptamers, in general, and TBA in particular, exhibit limited pharmacokinetic properties and are rapidly degraded in vivo by nucleases. In order to improve the biological performance of aptamers, a widely investigated strategy is the introduction of chemical modifications in their backbone at the level of the nucleobases, sugar moieties or phosphodiester linkages. Besides TBA, also other thrombin binding aptamers, able to adopt a well-defined G4 structure, e.g. mixed duplex/quadruplex sequences, as well as homo- and hetero-bivalent constructs, have been identified and optimized. Considering the growing need of new efficient anticoagulant agents associated with the strong therapeutic potential of these thrombin inhibitors, the research on thrombin binding aptamers is still a very hot and intriguing field. Herein, we comprehensively described the state-of-the-art knowledge on the DNA-based aptamers targeting thrombin, especially focusing on the optimized analogues obtained by chemically modifying the oligonucleotide backbone, and their biological performances in therapeutic applications.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; Department of Advanced Medical and Surgical Sciences, 2(nd) Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini, 5, I-80131 Naples, Italy.
| | - Ettore Napolitano
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.
| | - Chiara Platella
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy; Institute of Biostructures and Bioimages, CNR, via Mezzocannone 16, I-80134 Naples, Italy.
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy.
| |
Collapse
|
5
|
Cao Y, Li W, Gao T, Ding P, Pei R. One Terminal Guanosine Flip of Intramolecular Parallel G-Quadruplex: Catalytic Enhancement of G-Quadruplex/Hemin DNAzymes. Chemistry 2020; 26:8631-8638. [PMID: 32428287 DOI: 10.1002/chem.202001462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/13/2020] [Indexed: 11/09/2022]
Abstract
Numerous studies have shown compelling evidence that incorporation of an inversion of polarity site (IPS) in G-rich sequences can affect the topological and structural characteristics of G-quadruplexes (G4s). Herein, the influence of IPS on the formation of a previously studied intramolecular parallel G4 of d(G3 TG3 TG3 TG3 ) (TTT) and its stacked higher-order structures is explored. Insertion of 3'-3' or 5'-5' IPS did not change the parallel folding pattern of TTT. However, both the species and position of the IPS in TTT have a significant impact on the G4 stability and end-stacking through the alteration of G4-G4 interfaces properties. The data demonstrate that one base flip in each terminal G-tetrad can stabilize parallel G4s and facilitate intermolecular packing of monomeric G4s. Such modifications can also enhance the fluorescence and enzymatic performances by promoting interactions between parallel G4s with N-methyl mesoporphyrin IX (NMM) and hemin, respectively.
Collapse
Affiliation(s)
- Yanwei Cao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionic, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Wenjing Li
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionic, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Tian Gao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionic, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Pi Ding
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionic, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionic, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| |
Collapse
|
6
|
Chai Z, Guo L, Jin H, Li Y, Du S, Shi Y, Wang C, Shi W, He J. TBA loop mapping with 3'-inverted-deoxythymidine for fine-tuning of the binding affinity for α-thrombin. Org Biomol Chem 2019; 17:2403-2412. [PMID: 30735210 DOI: 10.1039/c9ob00053d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
TBA is a 15-mer DNA aptamer for human α-thrombin, and its three T-rich loops are involved in the binding interactions with thrombin differently. In order to clarify their specific spatial locations in the binding interactions and search for more favourable positions, here a systematic investigation of all the loop residues was conducted with 3'-inverted thymidine (iT), by which both unnatural 3'-3'- and 5'-5'-linkages for each incorporation were introduced in the tertiary structure. The changes in Tm values and CD spectra revealed that motifs T3T12 and T4T13 are structurally distinct. Longer anti-clotting time was obtained for the T3 and T12 modifications, respectively, while T4 and T13 were completely intolerant with such changes, in terms of stability and binding to thrombin. In particular, the increased affinity bindings and longer anti-clotting time were obtained with the replacement on the central loop T7G8T9, which were closely related to the existence of a monovalent ion, K+ or Na+, consistently with the supposed binding site of these ions in TBA. It is worthwhile to note that both the subtle variations of the loop residues induced by iT and the monovalent ions determined the interacting residues of TBA and the binding strength rather than the thermal stability of the TBA structure.
Collapse
Affiliation(s)
- Zhilong Chai
- School of Pharmaceutical Sciences, Guizhou University, Guizhou 550025, China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zhou Y, Yu Y, Gao L, Fei Y, Ye T, Li Q, Zhou X, Gan N, Shao Y. Structuring polarity-inverted TBA to G-quadruplex for selective recognition of planarity of natural isoquinoline alkaloids. Analyst 2018; 143:4907-4914. [PMID: 30238092 DOI: 10.1039/c8an01561a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Efficient structuring of DNA by small molecules is very crucial in developing DNA-based novel switches with an ideal performance. In this work, we found that inverting only the polarity of the 3' terminal guanine of the thrombin-binding aptamer (3iTBA) totally eradicates the original TBA G-quadruplex (G4) structure in K+. The unstructured 3iTBA can be further refolded upon specifically interacting with small molecules of natural isoquinoline alkaloids (IAs) due to their fruitful binding patterns with variant nucleic acid structures. We identified that 3iTBA can serve as a topology selector for planar IAs. Nitidine (NIT), owing to the planar aromatic ring and coplanar substituents, is the most efficient to restructure the 3iTBA random coil toward the anti-parallel G4 conformation. However, common metal ions can't realize this structuring. The topology selector competency of 3iTBA toward IAs' planarity can be visualized using gold nanoparticles (AuNPs) as the chromogenic readout. Our work expands the G4 repertoire by exploring the polarity inversion regulation and provides a new approach to switch nucleic acid structures toward a small molecule structure-sensitive sensor.
Collapse
Affiliation(s)
- Yufeng Zhou
- Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Virgilio A, Russo A, Amato T, Russo G, Mayol L, Esposito V, Galeone A. Monomolecular G-quadruplex structures with inversion of polarity sites: new topologies and potentiality. Nucleic Acids Res 2017; 45:8156-8166. [PMID: 28666330 PMCID: PMC5737522 DOI: 10.1093/nar/gkx566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/21/2017] [Indexed: 12/11/2022] Open
Abstract
In this paper, we report investigations, based on circular dichroism, nuclear magnetic resonance spectroscopy and electrophoresis methods, on three oligonucleotide sequences, each containing one 3′-3′ and two 5′-5′ inversion of polarity sites, and four G-runs with a variable number of residues, namely two, three and four (mTG2T, mTG3T and mTG4T with sequence 3′-TGnT-5′-5′-TGnT-3′-3′-TGnT-5′-5′-TGnT-3′ in which n = 2, 3 and 4, respectively), in comparison with their canonical counterparts (TGnT)4 (n = 2, 3 and 4). Oligonucleotides mTG3T and mTG4T have been proven to form very stable unprecedented monomolecular parallel G-quadruplex structures, characterized by three side loops containing the inversion of polarity sites. Both G-quadruplexes have shown an all-syn G-tetrad, while the other guanosines adopt anti glycosidic conformations. All oligonucleotides investigated have shown a noteworthy antiproliferative activity against lung cancer cell line Calu 6 and colorectal cancer cell line HCT-116 p53−/−. Interestingly, mTG3T and mTG4T have proven to be mostly resistant to nucleases in a fetal bovine serum assay. The whole of the data suggest the involvement of specific pathways and targets for the biological activity.
Collapse
Affiliation(s)
- Antonella Virgilio
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Annapina Russo
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Teresa Amato
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Giulia Russo
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Luciano Mayol
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Veronica Esposito
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Aldo Galeone
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
9
|
Sagi J. In What Ways Do Synthetic Nucleotides and Natural Base Lesions Alter the Structural Stability of G-Quadruplex Nucleic Acids? J Nucleic Acids 2017; 2017:1641845. [PMID: 29181193 PMCID: PMC5664352 DOI: 10.1155/2017/1641845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/15/2017] [Indexed: 01/03/2023] Open
Abstract
Synthetic analogs of natural nucleotides have long been utilized for structural studies of canonical and noncanonical nucleic acids, including the extensively investigated polymorphic G-quadruplexes (GQs). Dependence on the sequence and nucleotide modifications of the folding landscape of GQs has been reviewed by several recent studies. Here, an overview is compiled on the thermodynamic stability of the modified GQ folds and on how the stereochemical preferences of more than 70 synthetic and natural derivatives of nucleotides substituting for natural ones determine the stability as well as the conformation. Groups of nucleotide analogs only stabilize or only destabilize the GQ, while the majority of analogs alter the GQ stability in both ways. This depends on the preferred syn or anti N-glycosidic linkage of the modified building blocks, the position of substitution, and the folding architecture of the native GQ. Natural base lesions and epigenetic modifications of GQs explored so far also stabilize or destabilize the GQ assemblies. Learning the effect of synthetic nucleotide analogs on the stability of GQs can assist in engineering a required stable GQ topology, and exploring the in vitro action of the single and clustered natural base damage on GQ architectures may provide indications for the cellular events.
Collapse
Affiliation(s)
- Janos Sagi
- Rimstone Laboratory, RLI, Carlsbad, CA 92010, USA
| |
Collapse
|
10
|
He X, Guo L, He J, Xu H, Xie J. Stepping Library-Based Post-SELEX Strategy Approaching to the Minimized Aptamer in SPR. Anal Chem 2017; 89:6559-6566. [PMID: 28505431 DOI: 10.1021/acs.analchem.7b00700] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
When evolved from SELEX (systematic evolution of ligands by exponential enrichment), aptamers are generally about 70-130 nucleotides in length and needed to be effectively truncated for further diagnosis or therapeutic uses. Post-SELEX optimization is then aroused to simplify the aptamer sequence and improve the affinity property. In this work, we report a new post-SELEX strategy based on a stepping library for the first time. With a hypothesis that one nucleobase can influence the whole binding affinity through its adjacent base stacking and potential steric hydrogen bonding interaction, we designed a stepping library composed of all probable nucleotide truncation directions. We employed an aptamer 807-39nt toward EPO-α as a model, and surface plasmon resonance (SPR) as an efficient screening and evaluation method to optimize all label-free sequences in the library. We have successfully picked out In27 as the minimized aptamer from a mini library of only 35 sequences. Aptamer In27 has a sole loop, without the original stem portion of the initial aptamer, but retains the whole binding affinity. We have also defined the key nucleotide contribution by site mutagenesis with natural bases, and finally produced a degenerated sequence with higher or the same good affinities. Furthermore, we explored different binding behaviors between aptamer In27 and other recognition molecule such as agglutinin, monoclonal antibody, or receptor by competition or binding assays. Our work provides a new and efficient post-SELEX optimization strategy, as well as a minimized aptamer In27 with an explicit degenerated sequence and a defined binding behavior. That would enhance their great potential in future diagnosis and therapy.
Collapse
Affiliation(s)
- Xiaoqin He
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Academy of Military Medical Sciences and ‡State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences , Beijing 100850, China
| | - Lei Guo
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Academy of Military Medical Sciences and ‡State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences , Beijing 100850, China
| | - Junlin He
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Academy of Military Medical Sciences and ‡State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences , Beijing 100850, China
| | - Hua Xu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Academy of Military Medical Sciences and ‡State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences , Beijing 100850, China
| | - Jianwei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Academy of Military Medical Sciences and ‡State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences , Beijing 100850, China
| |
Collapse
|
11
|
Kolganova NA, Varizhuk AM, Novikov RA, Florentiev VL, Pozmogova GE, Borisova OF, Shchyolkina AK, Smirnov IP, Kaluzhny DN, Timofeev EN. Anomeric DNA quadruplexes. ARTIFICIAL DNA, PNA & XNA 2015; 5:e28422. [PMID: 25483931 DOI: 10.4161/adna.28422] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thrombin-binding aptamer (TBA) is a 15-nt DNA oligomer that efficiently inhibits thrombin. It has been shown that TBA folds into an anti-parallel unimolecular G-quadruplex. Its three-dimensional chair-like structure consists of two G-tetrads connected by TT and TGT loops. TBA undergoes fast degradation by nucleases in vivo. To improve the nuclease resistance of TBA, a number of modified analogs have been proposed. Here, we describe anomeric modifications of TBA. Non-natural α anomers were used to replace selected nucleotides in the loops and core. Significant stabilization of the quadruplex was observed for the anomeric modification of TT loops at T4 and T13. Replacement of the core guanines either prevents quadruplex assembly or induces rearrangement in G-tetrads. It was found that the anticoagulant properties of chimeric aptamers could be retained only with intact TT loops. On the contrary, modification of the TGT loop was shown to substantially increase nuclease resistance of the chimeric aptamer without a notable disturbance of its anticoagulant activity.
Collapse
Affiliation(s)
- Natalia A Kolganova
- a Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Moscow, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Unusual Chair-Like G-Quadruplex Structures: Heterochiral TBA Analogues Containing Inversion of Polarity Sites. J CHEM-NY 2015. [DOI: 10.1155/2015/473051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterochiral oligodeoxynucleotides based on the thrombin binding aptamer sequence, namely, 5′gg3′-3′TT5′-5′ggtgtgg3′-3′TT5′-5′gg3′ (H1), 5′gg3′-3′TT5′-5′gg3′-3′TGT5′-5′gg3′-3′TT5′-5′gg3′ (H2), and 5′gGTTGgtgtgGTTGg3′ (H3), where lower case letters indicate L-residues, have been investigated in their ability to fold in G-quadruplex structures through a combination of gel electrophoresis, circular dichroism, and UV spectroscopy techniques. InH1andH2inversions of polarity sites have been introduced to control the strand direction in the loop regions. Collected data suggest that all modified sequences are able to fold in chair-like G-quadruplexes mimicking the originalTBAstructure.
Collapse
|
13
|
Esposito V, Scuotto M, Capuozzo A, Santamaria R, Varra M, Mayol L, Virgilio A, Galeone A. A straightforward modification in the thrombin binding aptamer improving the stability, affinity to thrombin and nuclease resistance. Org Biomol Chem 2014; 12:8840-3. [PMID: 25296283 DOI: 10.1039/c4ob01475h] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Degradation of nucleic acids in biological environments is the major drawback of the therapeutic use of aptamers. Among the approaches used to circumvent this negative aspect, the introduction of 3'-3' inversion of polarity sites at the sequence 3'-end has successfully been proposed. However, the introduction of inversion of polarity at the ends of the sequence has never been exploited for G-quadruplex forming aptamers. In this communication we describe CD, UV, electrophoretic and biochemical investigations concerning thrombin binding aptamer analogues containing one or two inversions of polarity sites at the oligonucleotide ends. Data indicate that, in some cases, this straightforward chemical modification is able to improve, at the same time, the thermal stability, affinity to thrombin and nuclease resistance in biological environments, thus suggesting its general application as a post-SELEX modification also for other therapeutically promising aptamers adopting G-quadruplex structures.
Collapse
Affiliation(s)
- Veronica Esposito
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, 80131 Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Virgilio A, Petraccone L, Scuotto M, Vellecco V, Bucci M, Mayol L, Varra M, Esposito V, Galeone A. 5-Hydroxymethyl-2'-deoxyuridine residues in the thrombin binding aptamer: investigating anticoagulant activity by making a tiny chemical modification. Chembiochem 2014; 15:2427-34. [PMID: 25214456 DOI: 10.1002/cbic.201402355] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Indexed: 11/07/2022]
Abstract
We report an investigation into analogues of the thrombin binding aptamer (TBA). Individual thymidines were replaced by the unusual residue 5-hydroxymethyl-2'-deoxyuridine (hmU). This differs from the canonical thymidine by a hydroxyl group on the 5-methyl group. NMR and CD data clearly indicate that all TBA derivatives retain the ability to fold into the "chair-like" quadruplex structure. The presence of the hmU residue does not significantly affect the thermal stability of the modified aptamers compared to the parent, except for analogue H9, which showed a marked increase in melting temperature. Although all TBA analogues showed decreased affinities to thrombin, H3, H7, and H9 proved to have improved anticoagulant activities. Our data open up the possibility to enhance TBA biological properties, simply by introducing small chemical modifications.
Collapse
Affiliation(s)
- Antonella Virgilio
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131 Napoli (Italy)
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Šket P, Virgilio A, Esposito V, Galeone A, Plavec J. Strand directionality affects cation binding and movement within tetramolecular G-quadruplexes. Nucleic Acids Res 2012; 40:11047-57. [PMID: 22977177 PMCID: PMC3510487 DOI: 10.1093/nar/gks851] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Nuclear magnetic resonance study of G-quadruplex structures formed by d(TG3T) and its modified analogs containing a 5′-5′ or 3′-3′ inversion of polarity sites, namely d(3′TG5′-5′G2T3′), d(3′T5′-5′G3T3′) and d(5′TG3′-3′G2T5’) demonstrates formation of G-quadruplex structures with tetrameric topology and distinct cation-binding preferences. All oligonucleotides are able to form quadruplex structures with two binding sites, although the modified oligonucleotides also form, in variable amounts, quadruplex structures with only one bound cation. The inter-quartet cavities at the inversion of polarity sites bind ammonium ions less tightly than a naturally occurring 5′-3′ backbone. Exchange of 15 ions between G-quadruplex and bulk solution is faster at the 3′-end in comparison to the 5′-end. In addition to strand directionality, cation movement is influenced by formation of an all-syn G-quartet. Formation of such quartet has been observed also for the parent d(TG3T) that besides the canonical quadruplex with only all-anti G-quartets, forms a tetramolecular parallel quadruplex containing one all-syn G-quartet, never observed before in unmodified quadruplex structures.
Collapse
Affiliation(s)
- Primoz Šket
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, Ljubljana SI-1000, Slovenia
| | | | | | | | | |
Collapse
|
16
|
Polyvalent nucleic acid aptamers and modulation of their activity: a focus on the thrombin binding aptamer. Pharmacol Ther 2012; 136:202-15. [PMID: 22850531 DOI: 10.1016/j.pharmthera.2012.07.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 07/16/2012] [Indexed: 01/29/2023]
Abstract
Nucleic acid-based aptamers can be selected from combinatorial libraries of synthetic oligonucleotides to bind, with affinity and specificity similar to antibodies, a wide range of biomedically relevant targets. Compared to protein therapeutics, aptamers exhibit significant advantages in terms of size, non-immunogenicity and wide synthetic accessibility. Various chemical modifications have been introduced in the natural oligonucleotide backbone of aptamers in order to increase their half-life, as well as their pharmacological properties. Very effective alternative approaches, devised in order to improve both the aptamer activity and stability, were based on the design of polyvalent aptamers, able to establish multivalent interactions with the target: thus, multiple copies of an aptamer can be assembled on the same molecular- or nanomaterial-based scaffold. In the present review, the thrombin binding aptamers (TBAs) are analyzed as a model system to study multiple-aptamer constructs aimed at improving their anticoagulation activity in terms of binding to the target and stability to enzymatic degradation. Indeed - even if the large number of chemically modified TBAs investigated in the last 20 years has led to encouraging results - a significant progress has been obtained only recently with bivalent or engineered dendritic TBA aptamers, or assemblies of TBAs on nanoparticles and DNA nanostructures. Furthermore, the modulation of the aptamers activity by means of tailored drug-active reversal agents, especially in the field of anticoagulant aptamers, as well as the reversibility of the TBA activity through the use of antidotes, such as porphyrins, complementary oligonucleotides or of external stimuli, are discussed.
Collapse
|