1
|
Zhang T, Ouyang Z, Zhang Y, Sun H, Kong L, Xu Q, Qu J, Sun Y. Marine Natural Products in Inflammation-Related Diseases: Opportunities and Challenges. Med Res Rev 2025. [PMID: 40202793 DOI: 10.1002/med.22109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/11/2025]
Abstract
In recent decades, the potentiality of marine natural products (MNPs) in the medical field has been increasingly recognized. Natural compounds derived from marine microorganisms, algae, and invertebrates have shown significant promise for treating inflammation-related diseases. In this review, we cover the three primary sources of MNPs and their diverse and unique chemical structures and bioactivities. This review aims to summarize the progress of MNPs in combating inflammation-related diseases. Moreover, we cover the functions and mechanisms of MNPs in diseases, highlighting their functions in regulating inflammatory signaling pathways, cellular stress responses, and gut microbiota, among others. Meanwhile, we focus on key technologies and scientific methods to address the current limitations and challenges in MNPs.
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zijun Ouyang
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, China
| | - Yueran Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Haiyan Sun
- School of Food and Drug, Shenzhen Polytechnic University, Shenzhen, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
2
|
Lahiri H, Israeli E, Krugliak M, Basu K, Britan-Rosich Y, Yaish TR, Arkin IT. Potent Anti-Influenza Synergistic Activity of Theobromine and Arainosine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618054. [PMID: 39416015 PMCID: PMC11482935 DOI: 10.1101/2024.10.13.618054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Influenza represents one of the biggest health threats facing humanity. Seasonal epidemics can transition to global pandemics, with cross-species infection presenting a continuous challenge. Although vaccines and several anti-viral options are available, constant genetic drifts and shifts vitiate any of the aforementioned prevention and treatment options. Therefore, we describe an approach targeted at the virus's channel to derive new anti-viral options. Specifically, Influenza A's M2 protein is a well-characterized channel targeted for a long time by aminoadamantane blockers. However, widespread mutations in the protein render the drugs ineffective. Consequently, we started by screening a repurposed drug library against aminoadamantane-sensitive and resistant M2 channels using bacteria-based genetic assays. Subsequent in cellulo testing and structure-activity relationship studies yielded a combination of Theobromine and Arainosine, which exhibits stark anti-viral activity by inhibiting the virus's channel. The drug duo was potent against H1N1 pandemic swine flu, H5N1 pandemic avian flu, aminoadamantane-resistant and sensitive strains alike, exhibiting activity that surpassed Oseltamivir, the leading anti-flu drug on the market. When this drug duo was tested in an animal model, it once more outperformed Oseltamivir, considerably reducing disease symptoms and viral RNA progeny. In conclusion, the outcome of this study represents a new potential treatment option for influenza alongside an approach that is sufficiently general and readily applicable to other viral targets.
Collapse
|
3
|
Kolanthai E, Neal CJ, Kumar U, Fu Y, Seal S. Antiviral nanopharmaceuticals: Engineered surface interactions and virus-selective activity. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1823. [PMID: 35697665 DOI: 10.1002/wnan.1823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic has inspired large research investments from the global scientific community in the study of viral properties and antiviral technologies (e.g., self-cleaning surfaces, virucides, antiviral drugs, and vaccines). Emerging viruses are a constant threat due to the substantial variation in viral structures, limiting the potential for expanded broad-spectrum antiviral agent development, and the complexity of targeting multiple and diverse viral species with unique characteristics involving their virulence. Multiple, more infectious variants of SARS-CoV2 (e.g., Delta, Omicron) have already appeared, necessitating research into versatile, robust control strategies in response to the looming threat of future viruses. Nanotechnology and nanomaterials have played a vital role in addressing current viral threats, from mRNA-based vaccines to nanoparticle-based drugs and nanotechnology enhanced disinfection methods. Rapid progress in the field has prompted a review of the current literature primarily focused on nanotechnology-based virucides and antivirals. In this review, a brief description of antiviral drugs is provided first as background with most of the discussion focused on key design considerations for high-efficacy antiviral nanomaterials (e.g., nanopharmaceuticals) as determined from published studies as well as related modes of biological activity. Insights into potential future research directions are also provided with a section devoted specifically to the SARS-CoV2 virus. This article is categorized under: Toxicology and Regulatory Issues in Nanomediciney > Toxicology of Nanomaterials Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease.
Collapse
Affiliation(s)
- Elayaraja Kolanthai
- Department of Materials Science and Engineering, Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, Florida, USA
| | - Craig J Neal
- Department of Materials Science and Engineering, Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, Florida, USA
| | - Udit Kumar
- Department of Materials Science and Engineering, Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, Florida, USA
| | - Yifei Fu
- Department of Materials Science and Engineering, Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, Florida, USA
| | - Sudipta Seal
- Department of Materials Science and Engineering, Advanced Materials Processing and Analysis Center, University of Central Florida, Orlando, Florida, USA.,College of Medicine, Nanoscience Technology Center, Biionix Cluster, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
4
|
Zhang M, Wang N, Liu J, Wang C, Xu Y, Ma L. A review on biomass-derived levulinic acid for application in drug synthesis. Crit Rev Biotechnol 2021; 42:220-253. [DOI: 10.1080/07388551.2021.1939261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mingyue Zhang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Nan Wang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, PR China
- School of Environmental Science and Engineering, Tianjin University, Tianjin, PR China
| | - Jianguo Liu
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Chenguang Wang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Ying Xu
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Longlong Ma
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
5
|
Ocular prodrugs: Attributes and challenges. Asian J Pharm Sci 2020; 16:175-191. [PMID: 33995612 PMCID: PMC8105420 DOI: 10.1016/j.ajps.2020.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/17/2020] [Accepted: 08/26/2020] [Indexed: 11/23/2022] Open
Abstract
Ocular drug delivery is one of the most attention-grabbing and challenging endeavors among the numerous existing drug delivery systems. From a drug delivery point of view, eye is an intricate organ to investigate and explore. In spite of many limitations, advancements have been made with the intention of improving the residence time or permeation of the drug in the ocular region. Poor bioavailability of topically administered drugs is the major issue pertaining to ocular drug delivery. Several efforts have been made towards improving precorneal residence time and corneal penetration, e.g. iontophoresis, prodrugs and ion-pairing, etc. Prodrug approach (chemical approach) has been explored by the formulation scientists to optimize the physicochemical and biochemical properties of drug molecules for improving ocular bioavailability. Formulation of ocular prodrugs is a challenging task as they should exhibit optimum chemical stability as well as enzymatic liability so that they are converted into parent drug after administration at the desired pace. This review will encompass the concept of derivatization and recent academic and industrial advancements in the field of ocular prodrugs. The progression in prodrug designing holds a potential future for ophthalmic drug delivery.
Collapse
|
6
|
Synthetic Analogues of Aminoadamantane as Influenza Viral Inhibitors-In Vitro, In Silico and QSAR Studies. Molecules 2020; 25:molecules25173989. [PMID: 32883012 PMCID: PMC7504818 DOI: 10.3390/molecules25173989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 11/29/2022] Open
Abstract
A series of nineteen amino acid analogues of amantadine (Amt) and rimantadine (Rim) were synthesized and their antiviral activity was evaluated against influenza virus A (H3N2). Among these analogues, the conjugation of rimantadine with glycine illustrated high antiviral activity combined with low cytotoxicity. Moreover, this compound presented a profoundly high stability after in vitro incubation in human plasma for 24 h. Its thermal stability was established using differential and gravimetric thermal analysis. The crystal structure of glycyl-rimantadine revealed that it crystallizes in the orthorhombic Pbca space group. The structure–activity relationship for this class of compounds was established, with CoMFA (Comparative Molecular Field Analysis) 3D-Quantitative Structure Activity Relationships (3D-QSAR) studies predicting the activities of synthetic molecules. In addition, molecular docking studies were conducted, revealing the structural requirements for the activity of the synthetic molecules.
Collapse
|
7
|
A novel nucleoside rescue metabolic pathway may be responsible for therapeutic effect of orally administered cordycepin. Sci Rep 2019; 9:15760. [PMID: 31673018 PMCID: PMC6823370 DOI: 10.1038/s41598-019-52254-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/12/2019] [Indexed: 12/23/2022] Open
Abstract
Although adenosine and its analogues have been assessed in the past as potential drug candidates due to the important role of adenosine in physiology, only little is known about their absorption following oral administration. In this work, we have studied the oral absorption and disposition pathways of cordycepin, an adenosine analogue. In vitro biopharmaceutical properties and in vivo oral absorption and disposition of cordycepin were assessed in rats. Despite the fact that numerous studies showed efficacy following oral dosing of cordycepin, we found that intact cordycepin was not absorbed following oral administration to rats. However, 3′-deoxyinosine, a metabolite of cordycepin previously considered to be inactive, was absorbed into the systemic blood circulation. Further investigation was performed to study the conversion of 3′-deoxyinosine to cordycepin 5′-triphosphate in vitro using macrophage-like RAW264.7 cells. It demonstrated that cordycepin 5′-triphosphate, the active metabolite of cordycepin, can be formed not only from cordycepin, but also from 3′-deoxyinosine. The novel nucleoside rescue metabolic pathway proposed in this study could be responsible for therapeutic effects of adenosine and other analogues of adenosine following oral administration. These findings may have importance in understanding the physiology and pathophysiology associated with adenosine, as well as drug discovery and development utilising adenosine analogues.
Collapse
|
8
|
Szunerits S, Barras A, Khanal M, Pagneux Q, Boukherroub R. Nanostructures for the Inhibition of Viral Infections. Molecules 2015; 20:14051-81. [PMID: 26247927 PMCID: PMC6332336 DOI: 10.3390/molecules200814051] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 07/21/2015] [Accepted: 07/28/2015] [Indexed: 01/26/2023] Open
Abstract
Multivalent interactions are omnipresent in biology and confer biological systems with dramatically enhanced affinities towards different receptors. Such multivalent binding interactions have lately been considered for the development of new therapeutic strategies against bacterial and viral infections. Multivalent polymers, dendrimers, and liposomes have successfully targeted pathogenic interactions. While a high synthetic effort was often needed for the development of such therapeutics, the integration of multiple ligands onto nanostructures turned to be a viable alternative. Particles modified with multiple ligands have the additional advantage of creating a high local concentration of binding molecules. This review article will summarize the different nanoparticle-based approaches currently available for the treatment of viral infections.
Collapse
Affiliation(s)
- Sabine Szunerits
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN), UMR 8520 CNRS, Lille1 University, Avenue Poincaré-BP 60069, 59652 Villeneuve d\'Ascq, France.
| | - Alexandre Barras
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN), UMR 8520 CNRS, Lille1 University, Avenue Poincaré-BP 60069, 59652 Villeneuve d\'Ascq, France.
| | - Manakamana Khanal
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN), UMR 8520 CNRS, Lille1 University, Avenue Poincaré-BP 60069, 59652 Villeneuve d\'Ascq, France.
| | - Quentin Pagneux
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN), UMR 8520 CNRS, Lille1 University, Avenue Poincaré-BP 60069, 59652 Villeneuve d\'Ascq, France.
| | - Rabah Boukherroub
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN), UMR 8520 CNRS, Lille1 University, Avenue Poincaré-BP 60069, 59652 Villeneuve d\'Ascq, France.
| |
Collapse
|
9
|
Forsberg EM, Brennan JD. Bio-Solid-Phase Extraction/Tandem Mass Spectrometry for Identification of Bioactive Compounds in Mixtures. Anal Chem 2014; 86:8457-65. [DOI: 10.1021/ac5022166] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Erica M. Forsberg
- Biointerfaces Institute and Department of Chemistry & Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - John D. Brennan
- Biointerfaces Institute and Department of Chemistry & Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
10
|
Hevroni BL, Sayer AH, Blum E, Fischer B. Nucleoside-2',3'/3',5'-bis(thio)phosphate analogues are promising antioxidants acting mainly via Cu+/Fe2+ ion chelation. Inorg Chem 2014; 53:1594-605. [PMID: 24410662 DOI: 10.1021/ic402671q] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We synthesized a series of adenine/guanine 2',3'- or 3',5'-bisphosphate and -bisphosphorothioate analogues, 1-6, as potential Cu(+)/Fe(2+) chelators, with a view to apply them as biocompatible and water-soluble antioxidants. We found that electron paramagnetic resonance (EPR)-monitored inhibition of OH radicals production from H2O2, in an Fe(2+)-H2O2 system, by bisphosphate derivatives 1, 3, and 5 (IC50 = 36, 24, and 40 μM, respectively), was more effective than it was by ethylenediaminetetraacetic acid (EDTA), by a factor of 1.5, 2, and 1.4, respectively. Moreover, 2'-deoxyadenosine-3',5'-bisphosphate, 1, was 1.8- and 4.7-times more potent than adenosine 5'-monophosphate (AMP) and adenosine 5'-diphosphate (ADP), respectively. The bisphosphorothioate derivatives 2, 4, and 6 (IC50 = 92, 50, and 80 μM, respectively), exhibited a dual antioxidant activity, acting as both metal-ion chelators and radical scavengers [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assay data indicates IC50 = 50, 70, and 108 μM vs 27 μM for Trolox]. Only 2'-deoxyadenosine-3',5'-bisphosphorothioate, 2, exhibited good inhibition of Cu(+)-induced H2O2 decomposition (IC50 = 78 vs 224 μM for EDTA). Nucleoside-bisphosphorothioate analogues (2, 4, and 6) were weaker inhibitors than the corresponding bisphosphate analogues (1, 3, and 5), due to intramolecular oxidation under Fenton reaction conditions. (1)H- and (31)P NMR monitored Cu(+) titration of 2, showed that Cu(+) was coordinated by both 3',5'-bisphosphorothioate groups, as well as N7-nitrogen atom, while adenosine-2',3'-bisphosphorothioate, 6, coordinated Cu(+) only by 2',3'-bisphosphorothioate groups. In conclusion, an additional terminal phosphate group on AMP/guanosine 5'-monophosphate (GMP) resulted in Fe(2+)-selective chelators highly potent as Fenton reaction inhibitors.
Collapse
|
11
|
Rodríguez-Pérez T, Fernández S, Sanghvi YS, Detorio M, Schinazi RF, Gotor V, Ferrero M. Chemoenzymatic syntheses and anti-HIV-1 activity of glucose-nucleoside conjugates as prodrugs. Bioconjug Chem 2010; 21:2239-49. [PMID: 21077659 DOI: 10.1021/bc1002168] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphodiester linked conjugates of various nucleosides such as d4U, d4T, IdUrd, ddI, ddA, virazole, ara-A, and ara-C containing a glucosyl moiety have been described. These compounds were designed to act as prodrugs, where the corresponding 5'-monophosphates may be generated intracellularly. The synthesis of the glycoconjugates was achieved in good yields by condensation of a glucosyl phosphoramidite 7 with nucleosides in the presence of an activating agent. It was demonstrated that the glucose conjugates improve the water solubility of the nucleoside analogues, for example, up to 31-fold for the ara-A conjugate compared to that of ara-A alone. The new conjugates were tested for their anti-HIV-1 activity in human lymphocytes. These derivatives offer a convenient design for potential prodrug candidates with the possibility of improving the physicochemical properties and therapeutic activity of nucleoside analogues.
Collapse
Affiliation(s)
- Tatiana Rodríguez-Pérez
- Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33006-Oviedo (Asturias), Spain
| | | | | | | | | | | | | |
Collapse
|