1
|
Li Y, Wang R, Wang H, Pu F, Feng X, Jin L, Ma Z, Ma XX. Codon Usage Bias in Autophagy-Related Gene 13 in Eukaryotes: Uncovering the Genetic Divergence by the Interplay Between Nucleotides and Codon Usages. Front Cell Infect Microbiol 2021; 11:771010. [PMID: 34804999 PMCID: PMC8602353 DOI: 10.3389/fcimb.2021.771010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Synonymous codon usage bias is a universal characteristic of genomes across various organisms. Autophagy-related gene 13 (atg13) is one essential gene for autophagy initiation, yet the evolutionary trends of the atg13 gene at the usages of nucleotide and synonymous codon remains unexplored. According to phylogenetic analyses for the atg13 gene of 226 eukaryotic organisms at the nucleotide and amino acid levels, it is clear that their nucleotide usages exhibit more genetic information than their amino acid usages. Specifically, the overall nucleotide usage bias quantified by information entropy reflected that the usage biases at the first and second codon positions were stronger than those at the third position of the atg13 genes. Furthermore, the bias level of nucleotide ‘G’ usage is highest, while that of nucleotide ‘C’ usage is lowest in the atg13 genes. On top of that, genetic features represented by synonymous codon usage exhibits a species-specific pattern on the evolution of the atg13 genes to some extent. Interestingly, the codon usages of atg13 genes in the ancestor animals (Latimeria chalumnae, Petromyzon marinus, and Rhinatrema bivittatum) are strongly influenced by mutation pressure from nucleotide composition constraint. However, the distributions of nucleotide composition at different codon positions in the atg13 gene display that natural selection still dominates atg13 codon usages during organisms’ evolution.
Collapse
Affiliation(s)
- Yicong Li
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Rui Wang
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Huihui Wang
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Feiyang Pu
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xili Feng
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Li Jin
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Zhongren Ma
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xiao-Xia Ma
- Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
2
|
Deciphering the Binding of Salicylic Acid to Arabidopsis thaliana Chloroplastic GAPDH-A1. Int J Mol Sci 2020; 21:ijms21134678. [PMID: 32630078 PMCID: PMC7370300 DOI: 10.3390/ijms21134678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/22/2020] [Accepted: 06/28/2020] [Indexed: 11/25/2022] Open
Abstract
Salicylic acid (SA) has an essential role in the responses of plants to pathogens. SA initiates defence signalling via binding to proteins. NPR1 is a transcriptional co-activator and a key target of SA binding. Many other proteins have recently been shown to bind SA. Amongst these proteins are important enzymes of primary metabolism. This fact could stand behind SA’s ability to control energy fluxes in stressed plants. Nevertheless, only sparse information exists on the role and mechanisms of such binding. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was previously demonstrated to bind SA both in human and plants. Here, we detail that the A1 isomer of chloroplastic glyceraldehyde 3-phosphate dehydrogenase (GAPA1) from Arabidopsis thaliana binds SA with a KD of 16.7 nM, as shown in surface plasmon resonance experiments. Besides, we show that SA inhibits its GAPDH activity in vitro. To gain some insight into the underlying molecular interactions and binding mechanism, we combined in silico molecular docking experiments and molecular dynamics simulations on the free protein and protein–ligand complex. The molecular docking analysis yielded to the identification of two putative binding pockets for SA. A simulation in water of the complex between SA and the protein allowed us to determine that only one pocket—a surface cavity around Asn35—would efficiently bind SA in the presence of solvent. In silico mutagenesis and simulations of the ligand/protein complexes pointed to the importance of Asn35 and Arg81 in the binding of SA to GAPA1. The importance of this is further supported through experimental biochemical assays. Indeed, mutating GAPA1 Asn35 into Gly or Arg81 into Leu strongly diminished the ability of the enzyme to bind SA. The very same cavity is responsible for the NADP+ binding to GAPA1. More precisely, modelling suggests that SA binds to the very site where the pyrimidine group of the cofactor fits. NADH inhibited in a dose-response manner the binding of SA to GAPA1, validating our data.
Collapse
|
3
|
Demmler R, Fricke J, Dörner S, Gressler M, Hoffmeister D. S-Adenosyl-l-Methionine Salvage Impacts Psilocybin Formation in "Magic" Mushrooms. Chembiochem 2020; 21:1364-1371. [PMID: 31802575 PMCID: PMC7317531 DOI: 10.1002/cbic.201900649] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Indexed: 12/20/2022]
Abstract
Psychotropic Psilocybe mushrooms biosynthesize their principal natural product psilocybin in five steps, among them a phosphotransfer and two methyltransfer reactions, which consume one equivalent of 5'-adenosine triphosphate (ATP) and two equivalents of S-adenosyl-l-methionine (SAM). This short but co-substrate-intensive pathway requires nucleoside cofactor salvage to maintain high psilocybin production rates. We characterized the adenosine kinase (AdoK) and S-adenosyl-l-homocysteine (SAH) hydrolase (SahH) of Psilocybe cubensis. Both enzymes are directly or indirectly involved in regenerating SAM. qRT-PCR expression analysis revealed an induced expression of the genes in the fungal primordia and carpophores. A one-pot in vitro reaction with the N-methyltransferase PsiM of the psilocybin pathway demonstrates a concerted action with SahH to facilitate biosynthesis by removal of accumulating SAH.
Collapse
Affiliation(s)
- Richard Demmler
- Department Pharmaceutical MicrobiologyHans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Janis Fricke
- Department Pharmaceutical MicrobiologyHans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Sebastian Dörner
- Department Pharmaceutical MicrobiologyHans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Markus Gressler
- Department Pharmaceutical MicrobiologyHans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| | - Dirk Hoffmeister
- Department Pharmaceutical MicrobiologyHans-Knöll-InstituteFriedrich-Schiller-UniversitätBeutenbergstrasse 11a07745JenaGermany
| |
Collapse
|
4
|
Narunsky A, Kessel A, Solan R, Alva V, Kolodny R, Ben-Tal N. On the evolution of protein-adenine binding. Proc Natl Acad Sci U S A 2020; 117:4701-4709. [PMID: 32079721 PMCID: PMC7060716 DOI: 10.1073/pnas.1911349117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Proteins' interactions with ancient ligands may reveal how molecular recognition emerged and evolved. We explore how proteins recognize adenine: a planar rigid fragment found in the most common and ancient ligands. We have developed a computational pipeline that extracts protein-adenine complexes from the Protein Data Bank, structurally superimposes their adenine fragments, and detects the hydrogen bonds mediating the interaction. Our analysis extends the known motifs of protein-adenine interactions in the Watson-Crick edge of adenine and shows that all of adenine's edges may contribute to molecular recognition. We further show that, on the proteins' side, binding is often mediated by specific amino acid segments ("themes") that recur across different proteins, such that different proteins use the same themes when binding the same adenine-containing ligands. We identify numerous proteins that feature these themes and are thus likely to bind adenine-containing ligands. Our analysis suggests that adenine binding has emerged multiple times in evolution.
Collapse
Affiliation(s)
- Aya Narunsky
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Ramat Aviv, Israel
| | - Amit Kessel
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Ramat Aviv, Israel
| | - Ron Solan
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Ramat Aviv, Israel
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Rachel Kolodny
- Department of Computer Science, University of Haifa, Mount Carmel, 3498838 Haifa, Israel
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Ramat Aviv, Israel;
| |
Collapse
|
5
|
Mallo N, DeFelipe AP, Folgueira I, Sueiro RA, Lamas J, Leiro JM. Combined antiparasitic and anti-inflammatory effects of the natural polyphenol curcumin on turbot scuticociliatosis. JOURNAL OF FISH DISEASES 2017; 40:205-217. [PMID: 27334368 DOI: 10.1111/jfd.12503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/16/2016] [Accepted: 04/17/2016] [Indexed: 06/06/2023]
Abstract
The histiophagous scuticociliate Philasterides dicentrarchi is the aetiological agent of scuticociliatosis, a parasitic disease of farmed turbot. Curcumin, a polyphenol from Curcuma longa (turmeric), is known to have antioxidant and anti-inflammatory properties. We investigated the in vitro effects of curcumin on the growth of P. dicentrarchi and on the production of pro-inflammatory cytokines in turbot leucocytes activated by parasite cysteine proteases. At 100 μm, curcumin had a cytotoxic effect and completely inhibited the growth of the parasite. At 50 μm, curcumin inhibited the protease activity of the parasite and expression of genes encoding two virulence-associated proteases: leishmanolysin-like peptidase and cathepsin L-like. At concentrations between 25 and 50 μm, curcumin inhibited the expression of S-adenosyl-L-homocysteine hydrolase, an enzyme involved in the biosynthesis of the amino acids methionine and cysteine. At 100 μm, curcumin inhibited the expression of the cytokines tumour necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) produced in turbot leucocytes activated by parasite proteases. Results show that curcumin has a dual effect on scuticociliatosis: an antiparasitic effect on the catabolism and anabolism of ciliate proteins, and an anti-inflammatory effect that inhibits the production of proinflammatory cytokines in the host. The present findings suggest the potential usefulness of this polyphenol in treating scuticociliatosis.
Collapse
Affiliation(s)
- N Mallo
- Departamento de Microbiología y Parasitología, Instituto de Investigación y Análisis Alimentarios, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - A P DeFelipe
- Departamento de Microbiología y Parasitología, Instituto de Investigación y Análisis Alimentarios, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - I Folgueira
- Departamento de Microbiología y Parasitología, Instituto de Investigación y Análisis Alimentarios, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - R A Sueiro
- Departamento de Microbiología y Parasitología, Instituto de Investigación y Análisis Alimentarios, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
- Departamento de Biología Celular y Ecología, Facultad de Biología, Instituto de Acuicultura, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - J Lamas
- Departamento de Biología Celular y Ecología, Facultad de Biología, Instituto de Acuicultura, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - J M Leiro
- Departamento de Microbiología y Parasitología, Instituto de Investigación y Análisis Alimentarios, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
6
|
Schowen KB, Schowen RL, Borchardt SE, Borchardt PM, Artursson P, Audus KL, Augustijns P, Nicolazzo JA, Raub TJ, Schöneich C, Siahaan TJ, Takakura Y, Thakker DR, Wolfe MS. A Tribute to Ronald T. Borchardt—Teacher, Mentor, Scientist, Colleague, Leader, Friend, and Family Man. J Pharm Sci 2016; 105:370-385. [DOI: 10.1002/jps.24687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 09/24/2015] [Indexed: 11/08/2022]
|
7
|
Zheng Y, Chen CC, Ko TP, Xiao X, Yang Y, Huang CH, Qian G, Shao W, Guo RT. Crystal structures of S-adenosylhomocysteine hydrolase from the thermophilic bacterium Thermotoga maritima. J Struct Biol 2015; 190:135-42. [PMID: 25791616 DOI: 10.1016/j.jsb.2015.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 02/18/2015] [Accepted: 03/04/2015] [Indexed: 11/17/2022]
Abstract
S-adenosylhomocysteine (SAH) hydrolase catalyzes the reversible hydrolysis of SAH into adenosine and homocysteine by using NAD(+) as a cofactor. The enzyme from Thermotoga maritima (tmSAHH) has great potentials in industrial applications because of its hyperthermophilic properties. Here, two crystal structures of tmSAHH in complex with NAD(+) show both open and closed conformations despite the absence of bound substrate. Each subunit of the tetrameric enzyme is composed of three domains, namely the catalytic domain, the NAD(+)-binding domain and the C-terminal domain. The NAD(+) binding mode is clearly observed and a substrate analogue can also be modeled into the active site, where two cysteine residues in mesophilic enzymes are replaced by serine and threonine in tmSAHH. Notably, the C-terminal domain of tmSAHH lacks the second loop region of mesophilic SAHH, which is important in NAD(+) binding, and thus exposes the bound cofactor to the solvent. The difference explains the higher NAD(+) requirement of tmSAHH because of the reduced affinity. Furthermore, the feature of missing loop is consistently observed in thermophilic bacterial and archaeal SAHHs, and may be related to their thermostability.
Collapse
Affiliation(s)
- Yingying Zheng
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Chun-Chi Chen
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Xiansha Xiao
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yunyun Yang
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Chun-Hsiang Huang
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Guojun Qian
- Biofuels Institute, School of Environment, Jiangsu University, Zhenjiang 212013, China
| | - Weilan Shao
- Biofuels Institute, School of Environment, Jiangsu University, Zhenjiang 212013, China.
| | - Rey-Ting Guo
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
8
|
Anand P, Chandra N. Characterizing the pocketome of Mycobacterium tuberculosis and application in rationalizing polypharmacological target selection. Sci Rep 2014; 4:6356. [PMID: 25220818 PMCID: PMC5376175 DOI: 10.1038/srep06356] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 06/20/2014] [Indexed: 01/13/2023] Open
Abstract
Polypharmacology is beginning to emerge as an important concept in the field of drug discovery. However, there are no established approaches to either select appropriate target sets or design polypharmacological drugs. Here, we propose a structural-proteomics approach that utilizes the structural information of the binding sites at a genome-scale obtained through in-house algorithms to characterize the pocketome, yielding a list of ligands that can participate in various biochemical events in the mycobacterial cell. The pocket-type space is seen to be much larger than the sequence or fold-space, suggesting that variations at the site-level contribute significantly to functional repertoire of the organism. All-pair comparisons of binding sites within Mycobacterium tuberculosis (Mtb), pocket-similarity network construction and clustering result in identification of binding-site sets, each containing a group of similar binding sites, theoretically having a potential to interact with a common set of compounds. A polypharmacology index is formulated to rank targets by incorporating a measure of druggability and similarity to other pockets within the proteome. This study presents a rational approach to identify targets with polypharmacological potential along with possible drugs for repurposing, while simultaneously, obtaining clues on lead compounds for use in new drug-discovery pipelines.
Collapse
Affiliation(s)
- Praveen Anand
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
9
|
Corrales RM, Leiba J, Cohen-Gonsaud M, Molle V, Kremer L. Mycobacterium tuberculosis S-adenosyl-l-homocysteine hydrolase is negatively regulated by Ser/Thr phosphorylation. Biochem Biophys Res Commun 2012. [PMID: 23178568 DOI: 10.1016/j.bbrc.2012.11.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
S-Adenosylhomocysteine hydrolase (SahH) is known as an ubiquitous player in methylation-based process that maintains the intracellular S-adenosylhomocysteine (SAH) and S-adenosylmethionine (SAM) equilibrium. Given its crucial role in central metabolism in both eukaryotes and prokaryotes, it is assumed that SahH must be regulated, albeit little is known regarding molecular mechanisms governing its activity. We report here that SahH from Mycobacterium tuberculosis can be phosphorylated by mycobacterial Ser/Thr protein kinases and that phosphorylation negatively affects its enzymatic activity. Mass spectrometric analyses and site-directed mutagenesis identified Thr2 and Thr221 as the two phosphoacceptors. SahH_T2D, SahH_T221D and SahH_T2D/T221D, designed to mimic constitutive phosphorylation, exhibited markedly decreased activity compared to the wild-type enzyme. Both residues are fully conserved in other mycobacterial SahH orthologues, suggesting that SahH phosphorylation on Thr2 and Thr221 may represent a novel and presumably more general mechanism of regulation of the SAH/SAM balance in mycobacteria.
Collapse
Affiliation(s)
- Rosa Milagros Corrales
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université Montpellier 2, CNRS, UMR 5235, case 107, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | | | | | | | | |
Collapse
|
10
|
Liao S, Li R, Shi L, Wang J, Shang J, Zhu P, Chen B. Functional analysis of anS-adenosylhomocysteine hydrolase homolog of chestnut blight fungus. FEMS Microbiol Lett 2012; 336:64-72. [DOI: 10.1111/j.1574-6968.2012.02657.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/23/2012] [Accepted: 08/03/2012] [Indexed: 02/06/2023] Open
Affiliation(s)
- Suhuan Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and; Key Laboratory for Microbial and Plant Genetic Engineering; Ministry of Education; College of Life Science and Technology; Guangxi University; Nanning; China
| | - Ru Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and; Key Laboratory for Microbial and Plant Genetic Engineering; Ministry of Education; College of Life Science and Technology; Guangxi University; Nanning; China
| | - Liming Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and; Key Laboratory for Microbial and Plant Genetic Engineering; Ministry of Education; College of Life Science and Technology; Guangxi University; Nanning; China
| | - Jinzi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and; Key Laboratory for Microbial and Plant Genetic Engineering; Ministry of Education; College of Life Science and Technology; Guangxi University; Nanning; China
| | - Jinjie Shang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and; Key Laboratory for Microbial and Plant Genetic Engineering; Ministry of Education; College of Life Science and Technology; Guangxi University; Nanning; China
| | - Pingchuan Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and; Key Laboratory for Microbial and Plant Genetic Engineering; Ministry of Education; College of Life Science and Technology; Guangxi University; Nanning; China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and; Key Laboratory for Microbial and Plant Genetic Engineering; Ministry of Education; College of Life Science and Technology; Guangxi University; Nanning; China
| |
Collapse
|
11
|
Burgos ES, Gulab SA, Cassera MB, Schramm VL. Luciferase-based assay for adenosine: application to S-adenosyl-L-homocysteine hydrolase. Anal Chem 2012; 84:3593-8. [PMID: 22416759 DOI: 10.1021/ac203297z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
S-Adenosyl-L-homocysteine hydrolase (SAHH) catalyzes the reversible conversion of S-adenosyl-L-homocysteine (SAH) to adenosine (ADO) and L-homocysteine, promoting methyltransferase activity by relief of SAH inhibition. SAH catabolism is linked to S-adenosylmethionine metabolism, and the development of SAHH inhibitors is of interest for new therapeutics with anticancer or cholesterol-lowering effects. We have developed a continuous enzymatic assay for adenosine that facilitates high-throughput analysis of SAHH. This luciferase-based assay is 4000-fold more sensitive than former detection methods and is well suited for continuous monitoring of ADO formation in a 96-well-plate format. The high-affinity adenosine kinase from Anopheles gambiae efficiently converts adenosine to adenosine monophosphate (AMP) in the presence of guanosine triphosphate. AMP is converted to adenosine triphosphate and coupled to firefly luciferase. With this procedure, kinetic parameters (K(m), k(cat)) for SAHH were obtained, in good agreement with literature values. Assay characteristics include sustained light output combined with ultrasensitive detection (10(-7) unit of SAHH). The assay is documented with the characterization of slow-onset inhibition for inhibitors of the hydrolase. Application of this assay may facilitate the development of SAHH inhibitors and provide an ultrasensitive detection for the formation of adenosine from other biological reactions.
Collapse
Affiliation(s)
- Emmanuel S Burgos
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, United States
| | | | | | | |
Collapse
|