1
|
Nayak D, Weadick B, Govindarajan R. Combination of Tissue Microarray Profiling and Multiplexed IHC Approaches to Investigate Transport Mechanism of Nucleoside Analog Drug Resistance. Methods Mol Biol 2023; 2660:95-121. [PMID: 37191793 PMCID: PMC10311792 DOI: 10.1007/978-1-0716-3163-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Nucleoside analogs (NAs) are an established class of anticancer agents being used clinically for the treatment of diverse cancers, either as monotherapy or in combination with other established anticancer or pharmacological agents. To date, nearly a dozen anticancer NAs are approved by the FDA, and several novel NAs are being tested in preclinical and clinical trials for future applications. However, improper delivery of NAs into tumor cells because of alterations in expression of one or more drug carrier proteins (e.g., solute carrier (SLC) transporters) within tumor cells or cells surrounding the tumor microenvironment stands as one of the primary reasons for therapeutic drug resistance. The combination of tissue microarray (TMA) and multiplexed immunohistochemistry (IHC) is an advanced, high-throughput approach over conventional IHC that enables researchers to effectively investigate alterations to numerous such chemosensitivity determinants simultaneously in hundreds of tumor tissues derived from patients. In this chapter, taking an example of a TMA from pancreatic cancer patients treated with gemcitabine (a NA chemotherapeutic agent), we describe the step-by-step procedure of performing multiplexed IHC, imaging of TMA slides, and quantification of expression of some relevant markers in these tissue sections as optimized in our laboratory and discuss considerations while designing and carrying out this experiment.
Collapse
Affiliation(s)
- Debasis Nayak
- Division of Pharmaceutics and Pharmacology, The Ohio State University College of Pharmacy, Columbus, OH, USA
| | - Brenna Weadick
- Division of Pharmaceutics and Pharmacology, The Ohio State University College of Pharmacy, Columbus, OH, USA
| | - Rajgopal Govindarajan
- Division of Pharmaceutics and Pharmacology, The Ohio State University College of Pharmacy, Columbus, OH, USA.
- Translational Therapeutics, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
2
|
Rehan S, Shahid S, Salminen TA, Jaakola VP, Paavilainen VO. Current Progress on Equilibrative Nucleoside Transporter Function and Inhibitor Design. SLAS DISCOVERY 2019; 24:953-968. [PMID: 31503511 DOI: 10.1177/2472555219870123] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Physiological nucleosides are used for the synthesis of DNA, RNA, and ATP in the cell and serve as universal mammalian signaling molecules that regulate physiological processes such as vasodilation and platelet aggregation by engaging with cell surface receptors. The same pathways that allow uptake of physiological nucleosides mediate the cellular import of synthetic nucleoside analogs used against cancer, HIV, and other viral diseases. Physiological nucleosides and nucleoside drugs are imported by two families of nucleoside transporters: the SLC28 concentrative nucleoside transporters (CNTs) and SLC29 equilibrative nucleoside transporters (ENTs). The four human ENT paralogs are expressed in distinct tissues, localize to different subcellular sites, and transport a variety of different molecules. Here we provide an overview of the known structure-function relationships of the ENT family with a focus on ligand binding and transport in the context of a new hENT1 homology model. We provide a generic residue numbering system for the different ENTs to facilitate the interpretation of mutational data produced using different ENT homologs. The discovery of paralog-selective small-molecule modulators is highly relevant for the design of new therapies and for uncovering the functions of poorly characterized ENT family members. Here, we discuss recent developments in the discovery of new paralog-selective small-molecule ENT inhibitors, including new natural product-inspired compounds. Recent progress in the ability to heterologously produce functional ENTs will allow us to gain insight into the structure and functions of different ENT family members as well as the rational discovery of highly selective inhibitors.
Collapse
Affiliation(s)
- Shahid Rehan
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,HiLIFE, University of Helsinki, Helsinki, Finland
| | - Saman Shahid
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Tiina A Salminen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Veli-Pekka Jaakola
- Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Ville O Paavilainen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Gabra MM, Salmena L. microRNAs and Acute Myeloid Leukemia Chemoresistance: A Mechanistic Overview. Front Oncol 2017; 7:255. [PMID: 29164055 PMCID: PMC5674931 DOI: 10.3389/fonc.2017.00255] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/11/2017] [Indexed: 12/15/2022] Open
Abstract
Up until the early 2000s, a functional role for microRNAs (miRNAs) was yet to be elucidated. With the advent of increasingly high-throughput and precise RNA-sequencing techniques within the last two decades, it has become well established that miRNAs can regulate almost all cellular processes through their ability to post-transcriptionally regulate a majority of protein-coding genes and countless other non-coding genes. In cancer, miRNAs have been demonstrated to play critical roles by modifying or controlling all major hallmarks including cell division, self-renewal, invasion, and DNA damage among others. Before the introduction of anthracyclines and cytarabine in the 1960s, acute myeloid leukemia (AML) was considered a fatal disease. In decades since, prognosis has improved substantially; however, long-term survival with AML remains poor. Resistance to chemotherapy, whether it is present at diagnosis or induced during treatment is a major therapeutic challenge in the treatment of this disease. Certain mechanisms such as DNA damage response and drug targeting, cell cycling, cell death, and drug trafficking pathways have been shown to be further dysregulated in treatment resistant cancers. miRNAs playing key roles in the emergence of these drug resistance phenotypes have recently emerged and replacement or inhibition of these miRNAs may be a viable treatment option. Herein, we describe the roles miRNAs can play in drug resistant AML and we describe miRNA-transcript interactions found within other cancer states which may be present within drug resistant AML. We describe the mechanisms of action of these miRNAs and how they can contribute to a poor overall survival and outcome as well. With the precision of miRNA mimic- or antagomir-based therapies, miRNAs provide an avenue for exquisite targeting in the therapy of drug resistant cancers.
Collapse
Affiliation(s)
- Martino Marco Gabra
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Leonardo Salmena
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
4
|
Grixti JM, O'Hagan S, Day PJ, Kell DB. Enhancing Drug Efficacy and Therapeutic Index through Cheminformatics-Based Selection of Small Molecule Binary Weapons That Improve Transporter-Mediated Targeting: A Cytotoxicity System Based on Gemcitabine. Front Pharmacol 2017; 8:155. [PMID: 28396636 PMCID: PMC5366350 DOI: 10.3389/fphar.2017.00155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/10/2017] [Indexed: 12/23/2022] Open
Abstract
The transport of drug molecules is mainly determined by the distribution of influx and efflux transporters for which they are substrates. To enable tissue targeting, we sought to develop the idea that we might affect the transporter-mediated disposition of small-molecule drugs via the addition of a second small molecule that of itself had no inhibitory pharmacological effect but that influenced the expression of transporters for the primary drug. We refer to this as a “binary weapon” strategy. The experimental system tested the ability of a molecule that on its own had no cytotoxic effect to increase the toxicity of the nucleoside analog gemcitabine to Panc1 pancreatic cancer cells. An initial phenotypic screen of a 500-member polar drug (fragment) library yielded three “hits.” The structures of 20 of the other 2,000 members of this library suite had a Tanimoto similarity greater than 0.7 to those of the initial hits, and each was itself a hit (the cheminformatics thus providing for a massive enrichment). We chose the top six representatives for further study. They fell into three clusters whose members bore reasonable structural similarities to each other (two were in fact isomers), lending strength to the self-consistency of both our conceptual and experimental strategies. Existing literature had suggested that indole-3-carbinol might play a similar role to that of our fragments, but in our hands it was without effect; nor was it structurally similar to any of our hits. As there was no evidence that the fragments could affect toxicity directly, we looked for effects on transporter transcript levels. In our hands, only the ENT1-3 uptake and ABCC2,3,4,5, and 10 efflux transporters displayed measurable transcripts in Panc1 cultures, along with a ribonucleoside reductase RRM1 known to affect gemcitabine toxicity. Very strikingly, the addition of gemcitabine alone increased the expression of the transcript for ABCC2 (MRP2) by more than 12-fold, and that of RRM1 by more than fourfold, and each of the fragment “hits” served to reverse this. However, an inhibitor of ABCC2 was without significant effect, implying that RRM1 was possibly the more significant player. These effects were somewhat selective for Panc cells. It seems, therefore, that while the effects we measured were here mediated more by efflux than influx transporters, and potentially by other means, the binary weapon idea is hereby fully confirmed: it is indeed possible to find molecules that manipulate the expression of transporters that are involved in the bioactivity of a pharmaceutical drug. This opens up an entirely new area, that of chemical genomics-based drug targeting.
Collapse
Affiliation(s)
- Justine M Grixti
- Faculty of Biology, Medicine and Health, University of ManchesterManchester, UK; Manchester Institute of Biotechnology, University of ManchesterManchester, UK
| | - Steve O'Hagan
- Manchester Institute of Biotechnology, University of ManchesterManchester, UK; School of Chemistry, University of ManchesterManchester, UK; Centre for Synthetic Biology of Fine and Speciality Chemicals, University of ManchesterManchester, UK
| | - Philip J Day
- Faculty of Biology, Medicine and Health, University of ManchesterManchester, UK; Manchester Institute of Biotechnology, University of ManchesterManchester, UK
| | - Douglas B Kell
- Manchester Institute of Biotechnology, University of ManchesterManchester, UK; School of Chemistry, University of ManchesterManchester, UK; Centre for Synthetic Biology of Fine and Speciality Chemicals, University of ManchesterManchester, UK
| |
Collapse
|
5
|
Mandíková J, Volková M, Pávek P, Navrátilová L, Hyršová L, Janeba Z, Pavlík J, Bárta P, Trejtnar F. Entecavir Interacts with Influx Transporters hOAT1, hCNT2, hCNT3, but Not with hOCT2: The Potential for Renal Transporter-Mediated Cytotoxicity and Drug-Drug Interactions. Front Pharmacol 2016; 6:304. [PMID: 26779022 PMCID: PMC4700268 DOI: 10.3389/fphar.2015.00304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/11/2015] [Indexed: 12/29/2022] Open
Abstract
Entecavir (ETV) is one of the most potent agents for the treatment of the hepatitis B viral infection. The drug is principally eliminated by the kidney. The goal of this study was to investigate the potential of ETV to interact in vitro with the renal SLC transporters hOAT1, hOCT2, hCNT2 and hCNT3. Potential drug–drug interactions of ETV at the renal transporters with antiviral drugs known to be excreted by the kidney (adefovir, tenofovir, cidofovir) as well as transporter-dependent cytotoxicity were also examined. Interactions with the selected transporters along with cytotoxicity were studied in several transiently transfected cellular models using specific substrates and inhibitors. ETV was found to be both a substrate and inhibitor of hOAT1 (IC50 = 175.3 μM), hCNT2 (IC50 = 241.9 μM) and hCNT3 (IC50 = 278.4 μM) transporters, although it interacted with the transporters with relatively low affinities. ETV inhibited the cellular uptake of adefovir, tenofovir, and cidofovir by hOAT1; however, effective inhibition was shown at ETV concentrations exceeding therapeutic levels. In comparison with adefovir, tenofovir, and cidofovir, ETV displayed no transporter-mediated cytotoxicity in cells transfected with hOAT1, hCNT2, and hCNT3. No significant interaction of ETV with hOCT2 was detected. The study demonstrates interactions of ETV with several human renal transporters. For the first time, an interaction of ETV with the hCNTs was proved. We show that the potency of ETV to cause nephrotoxicity and/or clinically significant drug-drug interactions related to the tested transporters is considerably lower than that of adefovir, tenofovir, and cidofovir.
Collapse
Affiliation(s)
- Jana Mandíková
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University in Prague Hradec Králové, Czech Republic
| | - Marie Volková
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University in Prague Hradec Králové, Czech Republic
| | - Petr Pávek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University in Prague Hradec Králové, Czech Republic
| | - Lucie Navrátilová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University in Prague Hradec Králové, Czech Republic
| | - Lucie Hyršová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University in Prague Hradec Králové, Czech Republic
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic Prague, Czech Republic
| | - Jan Pavlík
- Cayman Pharma Ltd. Neratovice, Czech Republic
| | - Pavel Bárta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University in Prague Hradec Králové, Czech Republic
| | - František Trejtnar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University in Prague Hradec Králové, Czech Republic
| |
Collapse
|
6
|
Claudio-Montero A, Pinilla-Macua I, Fernández-Calotti P, Sancho-Mateo C, Lostao MP, Colomer D, Grandas A, Pastor-Anglada M. Fluorescent nucleoside derivatives as a tool for the detection of concentrative nucleoside transporter activity using confocal microscopy and flow cytometry. Mol Pharm 2015; 12:2158-66. [PMID: 25923048 DOI: 10.1021/acs.molpharmaceut.5b00142] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The abundance and function of transporter proteins at the plasma membrane are likely to be crucial in drug responsiveness. Functional detection of human concentrative nucleoside transporters (hCNTs) is of interest for predicting drug sensitivity because of their ability to transport most nucleoside-derived drugs. In the present study, two fluorescent nucleoside analogues, uridine-furan and etheno-cytidine, were evaluated as tools to study in vivo nucleoside transporter-related functions. These two molecules showed high affinity interactions with hCNT1 and hCNT3 and were shown to be substrates of both transporters. Both fluorescence microscopy and flow cytometry experiments showed that uridine-furan uptake was better suited for distinguishing cells that express hCNT1 or hCNT3. These data highlight the usefulness of fluorescent nucleoside derivatives, as long as they fulfill the requirements of confocal microscopy and flow cytometry, for in vivo analysis of hCNT-related function.
Collapse
Affiliation(s)
- Ana Claudio-Montero
- †Department of Biochemistry and Molecular Biology, University of Barcelona, Institute of Biomedicine (IBUB), Barcelona, Spain.,‡Oncology Programme, National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBER ehd), Instituto de Salud Carlos III, Barcelona, Spain.,⊥Department of Organic Chemistry, University of Barcelona, Institute of Biomedicine (IBUB), Barcelona, Spain
| | - Itziar Pinilla-Macua
- †Department of Biochemistry and Molecular Biology, University of Barcelona, Institute of Biomedicine (IBUB), Barcelona, Spain.,‡Oncology Programme, National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBER ehd), Instituto de Salud Carlos III, Barcelona, Spain
| | - Paula Fernández-Calotti
- †Department of Biochemistry and Molecular Biology, University of Barcelona, Institute of Biomedicine (IBUB), Barcelona, Spain.,‡Oncology Programme, National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBER ehd), Instituto de Salud Carlos III, Barcelona, Spain
| | - Carlos Sancho-Mateo
- #Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain
| | - María Pilar Lostao
- #Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain
| | - Dolors Colomer
- §Hematopathology Unit, Hospital Clínic and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Anna Grandas
- ⊥Department of Organic Chemistry, University of Barcelona, Institute of Biomedicine (IBUB), Barcelona, Spain
| | - Marçal Pastor-Anglada
- †Department of Biochemistry and Molecular Biology, University of Barcelona, Institute of Biomedicine (IBUB), Barcelona, Spain.,‡Oncology Programme, National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBER ehd), Instituto de Salud Carlos III, Barcelona, Spain
| |
Collapse
|
7
|
Kell DB, Oliver SG. How drugs get into cells: tested and testable predictions to help discriminate between transporter-mediated uptake and lipoidal bilayer diffusion. Front Pharmacol 2014; 5:231. [PMID: 25400580 PMCID: PMC4215795 DOI: 10.3389/fphar.2014.00231] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/29/2014] [Indexed: 12/12/2022] Open
Abstract
One approach to experimental science involves creating hypotheses, then testing them by varying one or more independent variables, and assessing the effects of this variation on the processes of interest. We use this strategy to compare the intellectual status and available evidence for two models or views of mechanisms of transmembrane drug transport into intact biological cells. One (BDII) asserts that lipoidal phospholipid Bilayer Diffusion Is Important, while a second (PBIN) proposes that in normal intact cells Phospholipid Bilayer diffusion Is Negligible (i.e., may be neglected quantitatively), because evolution selected against it, and with transmembrane drug transport being effected by genetically encoded proteinaceous carriers or pores, whose “natural” biological roles, and substrates are based in intermediary metabolism. Despite a recent review elsewhere, we can find no evidence able to support BDII as we can find no experiments in intact cells in which phospholipid bilayer diffusion was either varied independently or measured directly (although there are many papers where it was inferred by seeing a covariation of other dependent variables). By contrast, we find an abundance of evidence showing cases in which changes in the activities of named and genetically identified transporters led to measurable changes in the rate or extent of drug uptake. PBIN also has considerable predictive power, and accounts readily for the large differences in drug uptake between tissues, cells and species, in accounting for the metabolite-likeness of marketed drugs, in pharmacogenomics, and in providing a straightforward explanation for the late-stage appearance of toxicity and of lack of efficacy during drug discovery programmes despite macroscopically adequate pharmacokinetics. Consequently, the view that Phospholipid Bilayer diffusion Is Negligible (PBIN) provides a starting hypothesis for assessing cellular drug uptake that is much better supported by the available evidence, and is both more productive and more predictive.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry, The University of Manchester Manchester, UK ; Manchester Institute of Biotechnology, The University of Manchester Manchester, UK
| | - Stephen G Oliver
- Department of Biochemistry, University of Cambridge Cambridge, UK ; Cambridge Systems Biology Centre, University of Cambridge Cambridge, UK
| |
Collapse
|
8
|
Pinilla-Macua I, Fernández-Calotti P, Pérez-Del-Pulgar S, Pastor-Anglada M. Ribavirin uptake into human hepatocyte HHL5 cells is enhanced by interferon-α via up-regulation of the human concentrative nucleoside transporter (hCNT2). Mol Pharm 2014; 11:3223-30. [PMID: 24957263 DOI: 10.1021/mp500263p] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ribavirin is a broad spectrum antiviral that increases the response rate in chronic hepatitis C patients when administered in combination with IFNα. Ribavirin is a purine nucleoside derivative, transported into hepatocytes by nucleoside transporters. hCNT2 is the best candidate to mediate ribavirin uptake into hepatocytes due to its high-affinity for purines and its capacity to concentrate its substrates intracellularly. The aim of this study was to determine whether hCNT2 function is under IFNα modulation. IFNα treatment of the nontransformed human hepatocyte-derived cell line HHL5 induced a rapid and transient increase in hCNT2 activity after cytokine addition. hCNT2 activity up-regulation was associated with increased ribavirin accumulation into cells. This increase was consistent with the translocation of hCNT2-containing vesicles to the plasma membrane via a mechanism requiring ERK 1/2 and ROCK activation and cytoskeleton integrity. Longer treatments with IFNα induced transcriptional activation of the hCNT2-encoding gene (SLC28A2), resulting in a sustained increase in hCNT2-related activity. These observations are proof of concept for at least one of the putative mechanisms underlying the synergistic responses induced by combination therapy with IFNα and ribavirin.
Collapse
Affiliation(s)
- Itziar Pinilla-Macua
- Department of Biochemistry and Molecular Biology, University of Barcelona, Institute of Biomedicine (IBUB) , 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
9
|
Dos Santos-Rodrigues A, Grañé-Boladeras N, Bicket A, Coe IR. Nucleoside transporters in the purinome. Neurochem Int 2014; 73:229-37. [PMID: 24704797 DOI: 10.1016/j.neuint.2014.03.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 03/23/2014] [Accepted: 03/24/2014] [Indexed: 01/20/2023]
Abstract
The purinome is a rich complex of proteins and cofactors that are involved in fundamental aspects of cellular homeostasis and cellular responses. The purinome is evolutionarily ancient and is made up of thousands of members. Our understanding of the mechanisms linking some parts of this complex network and the physiological relevance of the various connections is well advanced. However, our understanding of other parts of the purinome is less well developed. Our research focuses on the adenosine or nucleoside transporters (NTs), which are members of the membrane purinome. Nucleoside transporters are integral membrane proteins that are responsible for the flux of nucleosides, such as adenosine, and nucleoside analog drugs, used in a variety of anti-cancer, anti-viral and anti-parasite therapies, across cell membranes. Nucleoside transporters form the SLC28 and SLC29 families of solute carriers and the protein members of these families are widely distributed in human tissues including the central nervous system (CNS). NTs modulate purinergic signaling in the CNS primarily through their effects on modulating prevailing adenosine levels inside and outside the cell. By clearing the extracellular milieu of adenosine, NTs can terminate adenosine receptor-dependent signaling and this raises the possibility of regulatory feedback loops that tie together receptor signaling with transporter function. Despite the important role of NTs as modulators of purinergic signaling in the human body, very little is known about the nature or underlying mechanisms of regulation of either the SLC28 or SLC29 families, particularly within the context of the CNS purinome. Here we provide a brief overview of our current understanding of the regulation of members of the SLC29 family and highlight some interesting avenues for future research.
Collapse
Affiliation(s)
| | - Natalia Grañé-Boladeras
- Department of Chemistry and Biology, Faculty of Science, Ryerson University, Toronto, ON, Canada
| | - Alex Bicket
- Department of Biology, Faculty of Science, York University, Toronto, ON, Canada
| | - Imogen R Coe
- Department of Biology, Faculty of Science, York University, Toronto, ON, Canada; Department of Chemistry and Biology, Faculty of Science, Ryerson University, Toronto, ON, Canada.
| |
Collapse
|
10
|
Bartholomä MD, Vortherms AR, Hillier S, Joyal J, Babich J, Doyle RP, Zubieta J. Synthesis, cytotoxicity and cellular uptake studies of N3 functionalized Re(CO)3 thymidine complexes. Dalton Trans 2011; 40:6216-25. [DOI: 10.1039/c0dt01452d] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|