1
|
Hu Z, Yue H, Qiao L. ARL6IP5 in cancers: bidirectional function and therapeutic value. Cancer Gene Ther 2025:10.1038/s41417-025-00903-x. [PMID: 40253526 DOI: 10.1038/s41417-025-00903-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/30/2025] [Accepted: 04/02/2025] [Indexed: 04/21/2025]
Abstract
ARL6IP5 (ADP-ribosylation-like factor 6 interacting protein 5) plays an important role in a variety of physiological or pathological processes, including in cancers. However, the biological roles of ARL6IP5 in cancers are controversial. In this mini-review, we summarized the current understanding on the role of ARL6IP5 in cancers, particularly in the progression of chronic hepatitis virus-related hepatocellular carcinoma, as well as the potential values of ARL6IP5 in cancer therapy.
Collapse
Affiliation(s)
- Zenan Hu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Centre for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Hanxun Yue
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Centre for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia.
| |
Collapse
|
2
|
Lemaire J, Mireault M, Jumarie C. Zinc interference with Cd‐induced hormetic effect in differentiated Caco‐2 cells: Evidence for inhibition downstream ERK activation. J Biochem Mol Toxicol 2019; 34:e22437. [DOI: 10.1002/jbt.22437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/07/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Joannie Lemaire
- Département des Sciences Biologiques, groupe TOXENUniversité du Québec à MontréalMontréal Québec Canada
| | - Myriam Mireault
- Département des Sciences Biologiques, groupe TOXENUniversité du Québec à MontréalMontréal Québec Canada
| | - Catherine Jumarie
- Département des Sciences Biologiques, groupe TOXENUniversité du Québec à MontréalMontréal Québec Canada
| |
Collapse
|
3
|
Wen C, Yang S, Zheng S, Feng X, Chen J, Yang F. Analysis of long non-coding RNA profiled following MC-LR-induced hepatotoxicity using high-throughput sequencing. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:1165-1172. [PMID: 30430930 DOI: 10.1080/15287394.2018.1532717] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The occurrence of microcystin-LR(MC-LR) variant a known hepatotoxin constitutes a global public health concern. However, the molecular mechanisms underlying MC-LR-induced hepatotoxicity remain to be determined. The aim of this study was to investigate whether long noncoding RNAs (lncRNA) were involved in MC-LR-mediated hepatotoxicity using human normal liver cell line HL7702 to profile lncRNAs after 24 hr treatment with MC-LR. With the use of high-throughput sequencing techniques, data showed that the expression levels of 37, 33, 34, 35 lncRNA were significantly altered following exposure to 1, 2.5, 5, or 10 μM MC-LR, respectively. In particular, the expression levels of LINC00847, MIR22HG and LNC_00027 were markedly increased in all treatment groups. It is of interest that LNC_00027 was identified as a novel lncRNA. Quantitative real-time PCR (qPCR) was employed to determine the differentially expressed lncRNA levels. Analysis using Gene Ontology (GO) enrichment identified the functions of target genes involved in systems development, metabolism, and protein binding. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that MC-LR exposure upregulated some important signaling pathways including pathway in cancer, PI3K-AKT signaling and MAPK pathway. In summary, data indicate that the MC-LR-induced alterations in lncRNA may be associated with hepatotoxicity and that upregulation of LINC00847, MIR22HG and LNC_00027 may play important roles in the observed MC-mediated liver damage.
Collapse
Affiliation(s)
- Cong Wen
- a Department of Occupational and Environmental Health, Xiangya School of Public Health , Central South University , Changsha , Hunan , China
| | - Shu Yang
- a Department of Occupational and Environmental Health, Xiangya School of Public Health , Central South University , Changsha , Hunan , China
| | - Shuilin Zheng
- a Department of Occupational and Environmental Health, Xiangya School of Public Health , Central South University , Changsha , Hunan , China
| | - Xiangling Feng
- a Department of Occupational and Environmental Health, Xiangya School of Public Health , Central South University , Changsha , Hunan , China
| | - Jihua Chen
- a Department of Occupational and Environmental Health, Xiangya School of Public Health , Central South University , Changsha , Hunan , China
| | - Fei Yang
- a Department of Occupational and Environmental Health, Xiangya School of Public Health , Central South University , Changsha , Hunan , China
- b Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health , Southeast University , Nanjing , China
- c Key laboratory of Hunan Province for Water Environment and Agriculture Product Safety , Central South University , Changsha , China
| |
Collapse
|
4
|
Identification of ARNT-regulated BIRC3 as the target factor in cadmium renal toxicity. Sci Rep 2017; 7:17287. [PMID: 29229987 PMCID: PMC5725491 DOI: 10.1038/s41598-017-17494-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/27/2017] [Indexed: 01/16/2023] Open
Abstract
Cadmium (Cd) is an environmental contaminant that exhibits renal toxicity. The target transcription factors involved in Cd renal toxicity are still unknown. In this study, we demonstrated that Cd decreased the activity of the ARNT transcription factor, and knockdown of ARNT significantly decreased the viability of human proximal tubular HK-2 cells. Microarray analysis in ARNT knockdown cells revealed a decrease in the expression of a number of genes, including a known apoptosis inhibitor, BIRC3, whose gene and protein expression level was also decreased by Cd treatment. Although the BIRC family consists of 8 members, Cd suppressed only BIRC3 gene expression. BIRC3 is known to suppress apoptosis through the inhibition effect on caspase-3. Knockdown of BIRC3 by siRNA as well as Cd treatment increased the level of active caspase-3. Moreover, knockdown of BIRC3 not only triggered cell toxicity and apoptosis but also strengthened Cd toxicity in HK-2 cells. Meanwhile, the activation of caspase-3 by suppression of BIRC3 gene expression was mostly specific to Cd and to proximal tubular cells. These results suggest that Cd induces apoptosis through the inhibition of ARNT-regulated BIRC3 in human proximal tubular cells.
Collapse
|
5
|
Gebraël C, Jumarie C. Cadmium interference with ERK1/2 and AhR signaling without evidence for cross-talk. Toxicol Res (Camb) 2015. [DOI: 10.1039/c5tx00284b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The possibility that Cd may activate AhR indirectlyviaERK1/2 phosphorylation was tested as a function of enterocytic differentiation status in the human Caco-2 cells.
Collapse
Affiliation(s)
- C. Gebraël
- Département des Sciences Biologiques
- Centre TOXEN
- Université du Québec à Montréal
- Montréal
- Canada
| | - C. Jumarie
- Département des Sciences Biologiques
- Centre TOXEN
- Université du Québec à Montréal
- Montréal
- Canada
| |
Collapse
|
6
|
Arano T, Fujisaki S, Ikemoto MJ. Identification of tomoregulin-1 as a novel addicsin-associated factor. Neurochem Int 2014; 71:22-35. [DOI: 10.1016/j.neuint.2014.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/14/2014] [Accepted: 03/18/2014] [Indexed: 11/28/2022]
|
7
|
An Z, Qi Y, Huang D, Gu X, Tian Y, Li P, Li H, Zhang Y. EGCG inhibits Cd(2+)-induced apoptosis through scavenging ROS rather than chelating Cd(2+) in HL-7702 cells. Toxicol Mech Methods 2014; 24:259-67. [PMID: 24392852 DOI: 10.3109/15376516.2013.879975] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
CONTEXT AND OBJECTIVE Epigallocatechin-3-gallat (EGCG), the major catechin in green tea, shows a potential protective effect against heavy metal toxicity to humans. Apoptosis is one of the key events in cadmium (Cd(2+))-induced cytotoxicity. Nevertheless, the study of EGCG on Cd(2+)-induced apoptosis is rarely reported. The objective of this study was to clarify the effect and detailed mechanism of EGCG on Cd(2+)-induced apoptosis. METHODS Normal human liver cells (HL-7702) were treated with Cd(2+) for 21 h, and then co-treated with EGCG for 3 h. Cell viability, apoptosis, intracellular reactive oxygen species (ROS), malondialdehyde (MDA), mitochondrial membrane potential (MMP) and caspase-3 activity were detected. On the other hand, the chelation of Cd(2+) with EGCG was tested by UV-Vis spectroscopy analysis and Nuclear Magnetic Resonance ((1)H NMR) spectroscopy under neutral condition (pH 7.2). RESULTS AND CONCLUSION Cd(2+) significantly decreased the cell viability and induced apoptosis in HL-7702 cells. Conversely, EGCG co-treatment resulted in significant inhibition of Cd(2+)-induced reduction of cell viability and apoptosis, implying a rescue effect of EGCG against Cd(2+) poisoning. The protective effect most likely arises from scavenging ROS and maintaining redox homeostasis, as the generation of intracellular ROS and MDA is significantly reduced by EGCG, which further prevents MMP collapse and suppresses caspase-3 activity. However, no evidence is observed for the chelation of EGCG with Cd(2+) under neutral condition. Therefore, a clear conclusion from this work can be made that EGCG could inhibit Cd(2+)-induced apoptosis by acting as a ROS scavenger rather than a metal chelating agent.
Collapse
Affiliation(s)
- Zhen An
- School of Life Sciences, Lanzhou University , Lanzhou, Gansu , China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Nair AR, DeGheselle O, Smeets K, Van Kerkhove E, Cuypers A. Cadmium-Induced Pathologies: Where Is the Oxidative Balance Lost (or Not)? Int J Mol Sci 2013; 14:6116-43. [PMID: 23507750 PMCID: PMC3634456 DOI: 10.3390/ijms14036116] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 02/04/2013] [Accepted: 02/20/2013] [Indexed: 12/12/2022] Open
Abstract
Over the years, anthropogenic factors have led to cadmium (Cd) accumulation in the environment causing various health problems in humans. Although Cd is not a Fenton-like metal, it induces oxidative stress in various animal models via indirect mechanisms. The degree of Cd-induced oxidative stress depends on the dose, duration and frequency of Cd exposure. Also the presence or absence of serum in experimental conditions, type of cells and their antioxidant capacity, as well as the speciation of Cd are important determinants. At the cellular level, the Cd-induced oxidative stress either leads to oxidative damage or activates signal transduction pathways to initiate defence responses. This balance is important on how different organ systems respond to Cd stress and ultimately define the pathological outcome. In this review, we highlight the Cd-induced oxidant/antioxidant status as well as the damage versus signalling scenario in relation to Cd toxicity. Emphasis is addressed to Cd-induced pathologies of major target organs, including a section on cell proliferation and carcinogenesis. Furthermore, attention is paid to Cd-induced oxidative stress in undifferentiated stem cells, which can provide information for future therapies in preventing Cd-induced pathologies.
Collapse
Affiliation(s)
- Ambily Ravindran Nair
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, Diepenbeek 3590, Belgium; E-Mails: (A.R.N.); (O.D.); (K.S.); (E.V.K.)
| | | | | | - Emmy Van Kerkhove
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, Diepenbeek 3590, Belgium; E-Mails: (A.R.N.); (O.D.); (K.S.); (E.V.K.)
| | - Ann Cuypers
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, Diepenbeek 3590, Belgium; E-Mails: (A.R.N.); (O.D.); (K.S.); (E.V.K.)
| |
Collapse
|
9
|
Luparello C, Sirchia R, Longo A. Cadmium as a transcriptional modulator in human cells. Crit Rev Toxicol 2010; 41:75-82. [DOI: 10.3109/10408444.2010.529104] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Gulisano M, Pacini S, Punzi T, Morucci G, Quagliata S, Delfino G, Sarchielli E, Marini M, Vannelli GB. Cadmium modulates proliferation and differentiation of human neuroblasts. J Neurosci Res 2009; 87:228-37. [DOI: 10.1002/jnr.21830] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Huang D, Zhang Y, Qi Y, Chen C, Ji W. Global DNA hypomethylation, rather than reactive oxygen species (ROS), a potential facilitator of cadmium-stimulated K562 cell proliferation. Toxicol Lett 2008; 179:43-7. [PMID: 18482805 DOI: 10.1016/j.toxlet.2008.03.018] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Revised: 03/24/2008] [Accepted: 03/30/2008] [Indexed: 11/27/2022]
Abstract
Cell proliferation plays a critical role in the process of cadmium (Cd) carcinogenesis. Although both induction of reactive oxygen species (ROS) and alteration of DNA methylation are involved in Cd-stimulated cell proliferation, the detailed mechanism of Cd-stimulated cell proliferation remains poorly understood. In this study, K562 cells pre-treated with N-acetylcysteine (NAC) or methionine (Meth) were exposed to Cd to investigate the potential contribution of ROS and global DNA methylation pathways in Cd-induced cell proliferation. The results showed that Cd-stimulated cell proliferation, increased ROS and DNA damage levels, and induced global DNA hypomethylation. The increases of ROS and DNA damage levels were attenuated by pre-treatment with NAC. Cd-stimulated cell proliferation did not appear to be suppressed through eliminating ROS by NAC. However, methionine was shown to prevent Cd-induced global DNA hypomethylation and Cd-stimulated cell proliferation. Our results suggest that global DNA hypomethylation, rather than ROS, is a potential facilitator of Cd-stimulated K562 cell proliferation.
Collapse
Affiliation(s)
- Dejun Huang
- Key Laboratory of Arid and Grassland Ecology, School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | | | | | | | | |
Collapse
|
12
|
JWA is required for arsenic trioxide induced apoptosis in HeLa and MCF-7 cells via reactive oxygen species and mitochondria linked signal pathway. Toxicol Appl Pharmacol 2008; 230:33-40. [PMID: 18387645 DOI: 10.1016/j.taap.2008.01.041] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 01/08/2008] [Accepted: 01/30/2008] [Indexed: 11/23/2022]
Abstract
Arsenic trioxide, emerging as a standard therapy for refractory acute promyelocytic leukemia, induces apoptosis in a variety of malignant cell lines. JWA, a novel retinoic acid-inducible gene, is known to be involved in apoptosis induced by various agents, for example, 12-O-tetradecanoylphorbol 13-acetate, N-4-hydroxy-phenyl-retinamide and arsenic trioxide. However, the molecular mechanisms underlying how JWA gene is functionally involved in apoptosis remain largely unknown. Herein, our studies demonstrated that treatment of arsenic trioxide produced apoptosis in HeLa and MCF-7 cells in a dose-dependent manner and paralleled with increased JWA expression. JWA expression was dependent upon generation of intracellular reactive oxygen species induced by arsenic trioxide. Knockdown of JWA attenuated arsenic trioxide induced apoptosis, and was accompanied by significantly reduced activity of caspase-9, enhanced Bad phosphorylation and inhibited MEK1/2, ERK1/2 and JNK phosphorylations. Arsenic trioxide induced loss of mitochondrial transmembrane potential was JWA-dependent. These findings suggest that JWA may serve as a pro-apoptotic molecule to mediate arsenic trioxide triggered apoptosis via a reactive oxygen species and mitochondria-associated signal pathway.
Collapse
|