1
|
Fernández-Bertólez N, Lema-Arranz C, Fraga S, Teixeira JP, Pásaro E, Lorenzo-López L, Valdiglesias V, Laffon B. Suitability of salivary leucocytes to assess DNA repair ability in human biomonitoring studies by the challenge-comet assay. CHEMOSPHERE 2022; 307:136139. [PMID: 36007734 DOI: 10.1016/j.chemosphere.2022.136139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/03/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The challenge-comet assay is a simple but effective approach that provides a quantitative and functional determination of DNA repair ability, and allows to monitor the kinetics of repair process. Peripheral blood mononuclear cells (PBMC) are the cells most frequently employed in human biomonitoring studies using the challenge-comet assay, but having a validated alternative of non-invasive biomatrix would be highly convenient for certain population groups and circumstances. The objective of this study was to validate the use of salivary leucocytes in the challenge-comet assay. Leucocytes were isolated from saliva samples and challenged (either in fresh or after cryopreservation) with three genotoxic agents acting by different action mechanisms: bleomycin, methyl methanesulfonate, and ultraviolet radiation. Comet assay was performed just after treatment and at other three additional time points, in order to study repair kinetics. The results obtained demonstrated that saliva leucocytes were as suitable as PBMC for assessing DNA damage of different nature that was efficiently repaired over the evaluated time points, even after 5 months of cryopreservation (after a 24 h stimulation with PHA). Furthermore, a new parameter to determine the efficacy of the repair process, independent of the initial amount of damage induced, is proposed, and recommendations to perform the challenge-comet assay with salivary leucocytes depending on the type of DNA repair to be assessed are suggested. Validation studies are needed to verify whether the method is reproducible and results reliable and comparable among laboratories and studies.
Collapse
Affiliation(s)
- Natalia Fernández-Bertólez
- Universidade da Coruña, Grupo NanoToxGen, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, 15071, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruna (INIBIC), Oza, 15071, A Coruna, Spain
| | - Carlota Lema-Arranz
- Universidade da Coruña, Grupo NanoToxGen, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, 15071, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruna (INIBIC), Oza, 15071, A Coruna, Spain; Universidade da Coruña, Grupo DICOMOSA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Psicología, Facultad de Ciencias de la Educación, Campus Elviña s/n, 15071, A Coruña, Spain
| | - Sónia Fraga
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055, Porto, Portugal; EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, nº 135, 4050-600, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - João Paulo Teixeira
- Department of Environmental Health, Portuguese National Institute of Health, Rua Alexandre Herculano, 321, 4000-055, Porto, Portugal; EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, nº 135, 4050-600, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - Eduardo Pásaro
- Instituto de Investigación Biomédica de A Coruna (INIBIC), Oza, 15071, A Coruna, Spain; Universidade da Coruña, Grupo DICOMOSA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Psicología, Facultad de Ciencias de la Educación, Campus Elviña s/n, 15071, A Coruña, Spain
| | - Laura Lorenzo-López
- Universidade da Coruña, Gerontology and Geriatrics Research Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), A Coruña, Spain
| | - Vanessa Valdiglesias
- Universidade da Coruña, Grupo NanoToxGen, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, 15071, A Coruña, Spain; Instituto de Investigación Biomédica de A Coruna (INIBIC), Oza, 15071, A Coruna, Spain.
| | - Blanca Laffon
- Instituto de Investigación Biomédica de A Coruna (INIBIC), Oza, 15071, A Coruna, Spain; Universidade da Coruña, Grupo DICOMOSA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Psicología, Facultad de Ciencias de la Educación, Campus Elviña s/n, 15071, A Coruña, Spain
| |
Collapse
|
2
|
Tice RR, Bassan A, Amberg A, Anger LT, Beal MA, Bellion P, Benigni R, Birmingham J, Brigo A, Bringezu F, Ceriani L, Crooks I, Cross K, Elespuru R, Faulkner DM, Fortin MC, Fowler P, Frericks M, Gerets HHJ, Jahnke GD, Jones DR, Kruhlak NL, Lo Piparo E, Lopez-Belmonte J, Luniwal A, Luu A, Madia F, Manganelli S, Manickam B, Mestres J, Mihalchik-Burhans AL, Neilson L, Pandiri A, Pavan M, Rider CV, Rooney JP, Trejo-Martin A, Watanabe-Sailor KH, White AT, Woolley D, Myatt GJ. In Silico Approaches In Carcinogenicity Hazard Assessment: Current Status and Future Needs. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 20. [PMID: 35368437 DOI: 10.1016/j.comtox.2021.100191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Historically, identifying carcinogens has relied primarily on tumor studies in rodents, which require enormous resources in both money and time. In silico models have been developed for predicting rodent carcinogens but have not yet found general regulatory acceptance, in part due to the lack of a generally accepted protocol for performing such an assessment as well as limitations in predictive performance and scope. There remains a need for additional, improved in silico carcinogenicity models, especially ones that are more human-relevant, for use in research and regulatory decision-making. As part of an international effort to develop in silico toxicological protocols, a consortium of toxicologists, computational scientists, and regulatory scientists across several industries and governmental agencies evaluated the extent to which in silico models exist for each of the recently defined 10 key characteristics (KCs) of carcinogens. This position paper summarizes the current status of in silico tools for the assessment of each KC and identifies the data gaps that need to be addressed before a comprehensive in silico carcinogenicity protocol can be developed for regulatory use.
Collapse
Affiliation(s)
- Raymond R Tice
- RTice Consulting, Hillsborough, North Carolina, 27278, USA
| | | | - Alexander Amberg
- Sanofi Preclinical Safety, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Lennart T Anger
- Genentech, Inc., South San Francisco, California, 94080, USA
| | - Marc A Beal
- Healthy Environments and Consumer Safety Branch, Health Canada, Government of Canada, Ottawa, Ontario, Canada K1A 0K9
| | | | | | - Jeffrey Birmingham
- GlaxoSmithKline, David Jack Centre for R&D, Ware, Hertfordshire, SG12 0DP, United Kingdom
| | - Alessandro Brigo
- Roche Pharmaceutical Research & Early Development, Pharmaceutical Sciences, Roche Innovation, Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | | | - Lidia Ceriani
- Humane Society International, 1000 Brussels, Belgium
| | - Ian Crooks
- British American Tobacco (Investments) Ltd, GR&D Centre, Southampton, SO15 8TL, United Kingdom
| | | | - Rosalie Elespuru
- Food and Drug Administration, Center for Devices and Radiological Health, Silver Spring, Maryland, 20993, USA
| | - David M Faulkner
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Marie C Fortin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, 08855, USA
| | - Paul Fowler
- FSTox Consulting (Genetic Toxicology), Northamptonshire, United Kingdom
| | | | | | - Gloria D Jahnke
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709, USA
| | | | - Naomi L Kruhlak
- Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland, 20993, USA
| | - Elena Lo Piparo
- Chemical Food Safety Group, Nestlé Research, CH-1000 Lausanne 26, Switzerland
| | - Juan Lopez-Belmonte
- Cuts Ice Ltd Chemical Food Safety Group, Nestlé Research, CH-1000 Lausanne 26, Switzerland
| | - Amarjit Luniwal
- North American Science Associates (NAMSA) Inc., Minneapolis, Minnesota, 55426, USA
| | - Alice Luu
- Healthy Environments and Consumer Safety Branch, Health Canada, Government of Canada, Ottawa, Ontario, Canada K1A 0K9
| | - Federica Madia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Serena Manganelli
- Chemical Food Safety Group, Nestlé Research, CH-1000 Lausanne 26, Switzerland
| | | | - Jordi Mestres
- IMIM Institut Hospital Del Mar d'Investigacions Mèdiques and Universitat Pompeu Fabra, Doctor Aiguader 88, Parc de Recerca Biomèdica, 08003 Barcelona, Spain; and Chemotargets SL, Baldiri Reixac 4, Parc Científic de Barcelona, 08028, Barcelona, Spain
| | | | - Louise Neilson
- Broughton Nicotine Services, Oak Tree House, Earby, Lancashire, BB18 6JZ United Kingdom
| | - Arun Pandiri
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709, USA
| | | | - Cynthia V Rider
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709, USA
| | - John P Rooney
- Integrated Laboratory Systems, LLC., Morrisville, North Carolina, 27560, USA
| | | | - Karen H Watanabe-Sailor
- School of Mathematical and Natural Sciences, Arizona State University, West Campus, Glendale, Arizona, 85306, USA
| | - Angela T White
- GlaxoSmithKline, David Jack Centre for R&D, Ware, Hertfordshire, SG12 0DP, United Kingdom
| | | | | |
Collapse
|
3
|
Ge J, Ngo LP, Kaushal S, Tay IJ, Thadhani E, Kay JE, Mazzucato P, Chow DN, Fessler JL, Weingeist DM, Sobol RW, Samson LD, Floyd SR, Engelward BP. CometChip enables parallel analysis of multiple DNA repair activities. DNA Repair (Amst) 2021; 106:103176. [PMID: 34365116 PMCID: PMC8439179 DOI: 10.1016/j.dnarep.2021.103176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 06/09/2021] [Accepted: 07/08/2021] [Indexed: 12/28/2022]
Abstract
DNA damage can be cytotoxic and mutagenic, and it is directly linked to aging, cancer, and other diseases. To counteract the deleterious effects of DNA damage, cells have evolved highly conserved DNA repair pathways. Many commonly used DNA repair assays are relatively low throughput and are limited to analysis of one protein or one pathway. Here, we have explored the capacity of the CometChip platform for parallel analysis of multiple DNA repair activities. Taking advantage of the versatility of the traditional comet assay and leveraging micropatterning techniques, the CometChip platform offers increased throughput and sensitivity compared to the traditional comet assay. By exposing cells to DNA damaging agents that create substrates of Base Excision Repair, Nucleotide Excision Repair, and Non-Homologous End Joining, we show that the CometChip is an effective method for assessing repair deficiencies in all three pathways. With these applications of the CometChip platform, we expand the utility of the comet assay for precise, high-throughput, parallel analysis of multiple DNA repair activities.
Collapse
Affiliation(s)
- Jing Ge
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Le P Ngo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Simran Kaushal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, United States
| | - Ian J Tay
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Elina Thadhani
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Jennifer E Kay
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Patrizia Mazzucato
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Danielle N Chow
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Jessica L Fessler
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - David M Weingeist
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Robert W Sobol
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, United States; University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, PA 15213, United States
| | - Leona D Samson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Scott R Floyd
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27514, United States
| | - Bevin P Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
4
|
Tatin X, Muggiolu G, Sauvaigo S, Breton J. Evaluation of DNA double-strand break repair capacity in human cells: Critical overview of current functional methods. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108388. [PMID: 34893153 DOI: 10.1016/j.mrrev.2021.108388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 02/05/2023]
Abstract
DNA double-strand breaks (DSBs) are highly deleterious lesions, responsible for mutagenesis, chromosomal translocation or cell death. DSB repair (DSBR) is therefore a critical part of the DNA damage response (DDR) to restore molecular and genomic integrity. In humans, this process is achieved through different pathways with various outcomes. The balance between DSB repair activities varies depending on cell types, tissues or individuals. Over the years, several methods have been developed to study variations in DSBR capacity. Here, we mainly focus on functional techniques, which provide dynamic information regarding global DSB repair proficiency or the activity of specific pathways. These methods rely on two kinds of approaches. Indirect techniques, such as pulse field gel electrophoresis (PFGE), the comet assay and immunofluorescence (IF), measure DSB repair capacity by quantifying the time-dependent decrease in DSB levels after exposure to a DNA-damaging agent. On the other hand, cell-free assays and reporter-based methods directly track the repair of an artificial DNA substrate. Each approach has intrinsic advantages and limitations and despite considerable efforts, there is currently no ideal method to quantify DSBR capacity. All techniques provide different information and can be regarded as complementary, but some studies report conflicting results. Parameters such as the type of biological material, the required equipment or the cost of analysis may also limit available options. Improving currently available methods measuring DSBR capacity would be a major step forward and we present direct applications in mechanistic studies, drug development, human biomonitoring and personalized medicine, where DSBR analysis may improve the identification of patients eligible for chemo- and radiotherapy.
Collapse
Affiliation(s)
- Xavier Tatin
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France; LXRepair, 5 Avenue du Grand Sablon, 38700 La Tronche, France
| | | | - Sylvie Sauvaigo
- LXRepair, 5 Avenue du Grand Sablon, 38700 La Tronche, France
| | - Jean Breton
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France.
| |
Collapse
|
5
|
Valdiglesias V, Sánchez-Flores M, Fernández-Bertólez N, Au W, Pásaro E, Laffon B. Expanded usage of the Challenge-Comet assay as a DNA repair biomarker in human populations: protocols for fresh and cryopreserved blood samples, and for different challenge agents. Arch Toxicol 2020; 94:4219-4228. [DOI: 10.1007/s00204-020-02881-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/12/2020] [Indexed: 12/19/2022]
|
6
|
Valdiglesias V, Sánchez-Flores M, Marcos-Pérez D, Lorenzo-López L, Maseda A, Millán-Calenti JC, Pásaro E, Laffon B. Exploring Genetic Outcomes as Frailty Biomarkers. J Gerontol A Biol Sci Med Sci 2019; 74:168-175. [PMID: 29684114 DOI: 10.1093/gerona/gly085] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/15/2018] [Indexed: 12/15/2022] Open
Abstract
Frailty has emerged as a reliable measure of the aging process. Because the early detection of frailty is crucial to prevent or even revert it, the use of biomarkers would allow an earlier and more objective identification of frail individuals. To improve the understanding of the biological features associated with frailty as well as to explore different biomarkers for its early identification, several genetic outcomes-mutagenicity, different types of genetic damage, and cellular repair capacity-were analyzed in a population of older adults classified into frail, prefrail, and nonfrail. Besides, influence of clinical parameters-nutritional status and cognitive status-was evaluated. No association of mutation rate or primary DNA damage with frailty was observed. However, DNA repair capacity showed a nonsignificant tendency to decrease with frailty, and persistent levels of phosphorylated H2AX, as indicative of DNA breakage, increased progressively with frailty severity. These results support the possible use of H2AX phosphorylation to provide information regarding frailty severity. Further investigation is necessary to determine the consistency of the current findings in different populations and larger sample sizes, to eventually standardize biomarkers to be used in clinics, and to fully understand the influence of cognitive impairment.
Collapse
Affiliation(s)
- Vanessa Valdiglesias
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Universidade da Coruña, Spain.,ISPUP-EPIUnit, Universidade do Porto, Portugal
| | - María Sánchez-Flores
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Universidade da Coruña, Spain.,Department of Cell and Molecular Biology, Universidade da Coruña, Spain
| | - Diego Marcos-Pérez
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Universidade da Coruña, Spain.,Department of Cell and Molecular Biology, Universidade da Coruña, Spain
| | - Laura Lorenzo-López
- Gerontology Research Group, Universidade da Coruña, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Spain
| | - Ana Maseda
- Gerontology Research Group, Universidade da Coruña, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Spain
| | - José C Millán-Calenti
- Gerontology Research Group, Universidade da Coruña, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Spain
| | - Eduardo Pásaro
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Universidade da Coruña, Spain
| | - Blanca Laffon
- DICOMOSA Group, Department of Psychology, Area of Psychobiology, Universidade da Coruña, Spain
| |
Collapse
|
7
|
Kroupa M, Polivkova Z, Rachakonda S, Schneiderova M, Vodenkova S, Buchler T, Jiraskova K, Urbanova M, Vodickova L, Hemminki K, Kumar R, Vodicka P. Bleomycin‐induced chromosomal damage and shortening of telomeres in peripheral blood lymphocytes of incident cancer patients. Genes Chromosomes Cancer 2017; 57:61-69. [DOI: 10.1002/gcc.22508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/02/2017] [Accepted: 10/11/2017] [Indexed: 12/16/2022] Open
Affiliation(s)
- Michal Kroupa
- Faculty of Medicine and Biomedical Center in Pilsen, Charles UniversityPilsen30605 Czech Republic
- Department of Molecular Biology of CancerInstitute of Experimental Medicine, The Czech Academy of SciencesPrague14220 Czech Republic
| | - Zdenka Polivkova
- Department of Medical GeneticsThird Faculty of Medicine, Charles UniversityPrague10000 Czech Republic
| | | | - Michaela Schneiderova
- Department of SurgeryGeneral University Hospital in PraguePrague12800 Czech Republic
| | - Sona Vodenkova
- Department of Molecular Biology of CancerInstitute of Experimental Medicine, The Czech Academy of SciencesPrague14220 Czech Republic
- Department of Medical GeneticsThird Faculty of Medicine, Charles UniversityPrague10000 Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles UniversityPrague12800 Czech Republic
| | - Tomas Buchler
- Department of OncologyFirst Faculty of Medicine, Charles University and Thomayer HospitalPrague, 14059 Czech Republic
| | - Katerina Jiraskova
- Department of Molecular Biology of CancerInstitute of Experimental Medicine, The Czech Academy of SciencesPrague14220 Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles UniversityPrague12800 Czech Republic
| | - Marketa Urbanova
- Department of Molecular Biology of CancerInstitute of Experimental Medicine, The Czech Academy of SciencesPrague14220 Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles UniversityPrague12800 Czech Republic
| | - Ludmila Vodickova
- Faculty of Medicine and Biomedical Center in Pilsen, Charles UniversityPilsen30605 Czech Republic
- Department of Molecular Biology of CancerInstitute of Experimental Medicine, The Czech Academy of SciencesPrague14220 Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles UniversityPrague12800 Czech Republic
| | - Kari Hemminki
- Division of Molecular Genetic EpidemiologyGerman Cancer Research CenterHeidelberg69120 Germany
| | - Rajiv Kumar
- Division of Molecular Genetic EpidemiologyGerman Cancer Research CenterHeidelberg69120 Germany
| | - Pavel Vodicka
- Faculty of Medicine and Biomedical Center in Pilsen, Charles UniversityPilsen30605 Czech Republic
- Department of Molecular Biology of CancerInstitute of Experimental Medicine, The Czech Academy of SciencesPrague14220 Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles UniversityPrague12800 Czech Republic
| |
Collapse
|
8
|
Sánchez-Flores M, Marcos-Pérez D, Costa S, Teixeira JP, Bonassi S, Pásaro E, Laffon B, Valdiglesias V. Oxidative stress, genomic features and DNA repair in frail elderly: A systematic review. Ageing Res Rev 2017; 37:1-15. [PMID: 28487242 DOI: 10.1016/j.arr.2017.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 01/09/2023]
Abstract
Frailty is an emerging geriatric syndrome characterized by higher vulnerability to stressors, with an increased risk of adverse health outcomes such as mortality, morbidity, disability, hospitalization, and institutionalization. Although it is generally recognized to have a biological basis, no particular biological trait has been consistently associated to frailty status so far. In this work, epidemiological studies evaluating association of frailty status with alterations at cellular level - namely oxidative stress, genomic instability and DNA damage and repair biomarkers -were revised and compared. A total of 25 studies fulfilled inclusion/exclusion criteria and, consequently, were included in the review. Variations of oxidative stress biomarkers were often associated to frailty status in older people. On the contrary, genomic instability seems not to be linked to frailty. The only study which addressed the possible relationship between DNA repair modulations and frailty status also failed in finding association. Despite the large number of cellular alterations known to be associated with frailty, studies on this issue are still very scarce and limited to some of the possible cellular targets. The established link between DNA repair, genomic instability, and age and age-related disorders, encourage deeper investigations on this line.
Collapse
|
9
|
Valdiglesias V, Prego-Faraldo MV, Pásaro E, Méndez J, Laffon B. Okadaic acid: more than a diarrheic toxin. Mar Drugs 2013; 11:4328-49. [PMID: 24184795 PMCID: PMC3853731 DOI: 10.3390/md11114328] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/08/2013] [Accepted: 10/23/2013] [Indexed: 01/04/2023] Open
Abstract
Okadaic acid (OA) is one of the most frequent and worldwide distributed marine toxins. It is easily accumulated by shellfish, mainly bivalve mollusks and fish, and, subsequently, can be consumed by humans causing alimentary intoxications. OA is the main representative diarrheic shellfish poisoning (DSP) toxin and its ingestion induces gastrointestinal symptoms, although it is not considered lethal. At the molecular level, OA is a specific inhibitor of several types of serine/threonine protein phosphatases and a tumor promoter in animal carcinogenesis experiments. In the last few decades, the potential toxic effects of OA, beyond its role as a DSP toxin, have been investigated in a number of studies. Alterations in DNA and cellular components, as well as effects on immune and nervous system, and even on embryonic development, have been increasingly reported. In this manuscript, results from all these studies are compiled and reviewed to clarify the role of this toxin not only as a DSP inductor but also as cause of alterations at the cellular and molecular levels, and to highlight the relevance of biomonitoring its effects on human health. Despite further investigations are required to elucidate OA mechanisms of action, toxicokinetics, and harmful effects, there are enough evidences illustrating its toxicity, not related to DSP induction, and, consequently, supporting a revision of the current regulation on OA levels in food.
Collapse
Affiliation(s)
- Vanessa Valdiglesias
- Toxicology Unit, Department of Psychobiology, University of A Coruña, A Coruña E15071, Spain; E-Mails: (E.P.); (B.L.)
- Department of Cellular and Molecular Biology, University of A Coruna, A Coruña E15071, Spain; E-Mails: (M.V.P.-F.); (J.M.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-981167000; Fax: +34-981167172
| | - María Verónica Prego-Faraldo
- Department of Cellular and Molecular Biology, University of A Coruna, A Coruña E15071, Spain; E-Mails: (M.V.P.-F.); (J.M.)
| | - Eduardo Pásaro
- Toxicology Unit, Department of Psychobiology, University of A Coruña, A Coruña E15071, Spain; E-Mails: (E.P.); (B.L.)
| | - Josefina Méndez
- Department of Cellular and Molecular Biology, University of A Coruna, A Coruña E15071, Spain; E-Mails: (M.V.P.-F.); (J.M.)
| | - Blanca Laffon
- Toxicology Unit, Department of Psychobiology, University of A Coruña, A Coruña E15071, Spain; E-Mails: (E.P.); (B.L.)
| |
Collapse
|